test_util.py 2.74 KB
Newer Older
Rayyyyy's avatar
Rayyyyy committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import numpy as np
import sklearn
import torch

from sentence_transformers import SentenceTransformer, util


def test_normalize_embeddings() -> None:
    """Tests the correct computation of util.normalize_embeddings"""
    embedding_size = 100
    a = torch.tensor(np.random.randn(50, embedding_size))
    a_norm = util.normalize_embeddings(a)

    for embedding in a_norm:
        assert len(embedding) == embedding_size
        emb_norm = torch.norm(embedding)
        assert abs(emb_norm.item() - 1) < 0.0001


def test_pytorch_cos_sim() -> None:
    """Tests the correct computation of util.pytorch_cos_scores"""
    a = np.random.randn(50, 100)
    b = np.random.randn(50, 100)

    sklearn_pairwise = sklearn.metrics.pairwise.cosine_similarity(a, b)
    pytorch_cos_scores = util.pytorch_cos_sim(a, b).numpy()
    for i in range(len(sklearn_pairwise)):
        for j in range(len(sklearn_pairwise[i])):
            assert abs(sklearn_pairwise[i][j] - pytorch_cos_scores[i][j]) < 0.001


def test_semantic_search() -> None:
    """Tests util.semantic_search function"""
    num_queries = 20
    num_k = 10

    doc_emb = torch.tensor(np.random.randn(1000, 100))
    q_emb = torch.tensor(np.random.randn(num_queries, 100))
    hits = util.semantic_search(q_emb, doc_emb, top_k=num_k, query_chunk_size=5, corpus_chunk_size=17)
    assert len(hits) == num_queries
    assert len(hits[0]) == num_k

    # Sanity Check of the results
    cos_scores = util.pytorch_cos_sim(q_emb, doc_emb)
    cos_scores_values, cos_scores_idx = cos_scores.topk(num_k)
    cos_scores_values = cos_scores_values.cpu().tolist()
    cos_scores_idx = cos_scores_idx.cpu().tolist()

    for qid in range(num_queries):
        for hit_num in range(num_k):
            assert hits[qid][hit_num]["corpus_id"] == cos_scores_idx[qid][hit_num]
            assert np.abs(hits[qid][hit_num]["score"] - cos_scores_values[qid][hit_num]) < 0.001


def test_paraphrase_mining() -> None:
    model = SentenceTransformer("all-MiniLM-L6-v2")
    sentences = [
        "This is a test",
        "This is a test!",
        "The cat sits on mat",
        "The cat sits on the mat",
        "On the mat a cat sits",
        "A man eats pasta",
        "A woman eats pasta",
        "A man eats spaghetti",
    ]
    duplicates = util.paraphrase_mining(model, sentences)

    for score, a, b in duplicates:
        if score > 0.5:
            assert (a, b) in [(0, 1), (2, 3), (2, 4), (3, 4), (5, 6), (5, 7), (6, 7)]


def test_pairwise_scores() -> None:
    a = np.random.randn(50, 100)
    b = np.random.randn(50, 100)

    # Pairwise cos
    sklearn_pairwise = 1 - sklearn.metrics.pairwise.paired_cosine_distances(a, b)
    pytorch_cos_scores = util.pairwise_cos_sim(a, b).numpy()
    assert np.allclose(sklearn_pairwise, pytorch_cos_scores)