Pooling.py 10.2 KB
Newer Older
Rayyyyy's avatar
Rayyyyy committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import torch
from torch import Tensor
from torch import nn
from typing import Dict
import os
import json


class Pooling(nn.Module):
    """Performs pooling (max or mean) on the token embeddings.

    Using pooling, it generates from a variable sized sentence a fixed sized sentence embedding. This layer also allows
    to use the CLS token if it is returned by the underlying word embedding model. You can concatenate multiple poolings
    together.

    :param word_embedding_dimension: Dimensions for the word embeddings
    :param pooling_mode: Either "cls", "lasttoken", "max", "mean", "mean_sqrt_len_tokens", or "weightedmean". If set, overwrites the other pooling_mode_* settings
    :param pooling_mode_cls_token: Use the first token (CLS token) as text representations
    :param pooling_mode_max_tokens: Use max in each dimension over all tokens.
    :param pooling_mode_mean_tokens: Perform mean-pooling
    :param pooling_mode_mean_sqrt_len_tokens: Perform mean-pooling, but divide by sqrt(input_length).
    :param pooling_mode_weightedmean_tokens: Perform (position) weighted mean pooling. See `SGPT: GPT Sentence Embeddings for Semantic Search <https://arxiv.org/abs/2202.08904>`_.
    :param pooling_mode_lasttoken: Perform last token pooling. See `SGPT: GPT Sentence Embeddings for Semantic Search <https://arxiv.org/abs/2202.08904>`_ and `Text and Code Embeddings by Contrastive Pre-Training <https://arxiv.org/abs/2201.10005>`_.
    """

    POOLING_MODES = (
        "cls",
        "lasttoken",
        "max",
        "mean",
        "mean_sqrt_len_tokens",
        "weightedmean",
    )

    def __init__(
        self,
        word_embedding_dimension: int,
        pooling_mode: str = None,
        pooling_mode_cls_token: bool = False,
        pooling_mode_max_tokens: bool = False,
        pooling_mode_mean_tokens: bool = True,
        pooling_mode_mean_sqrt_len_tokens: bool = False,
        pooling_mode_weightedmean_tokens: bool = False,
        pooling_mode_lasttoken: bool = False,
        include_prompt=True,
    ) -> None:
        super(Pooling, self).__init__()

        self.config_keys = [
            "word_embedding_dimension",
            "pooling_mode_cls_token",
            "pooling_mode_mean_tokens",
            "pooling_mode_max_tokens",
            "pooling_mode_mean_sqrt_len_tokens",
            "pooling_mode_weightedmean_tokens",
            "pooling_mode_lasttoken",
            "include_prompt",
        ]

        if pooling_mode is not None:  # Set pooling mode by string
            pooling_mode = pooling_mode.lower()

            if pooling_mode not in self.POOLING_MODES:
                raise ValueError(
                    f"Set invalid pooling mode: {pooling_mode}. Valid pooling modes are: {self.POOLING_MODES}."
                )

            pooling_mode_cls_token = pooling_mode == "cls"
            pooling_mode_max_tokens = pooling_mode == "max"
            pooling_mode_mean_tokens = pooling_mode == "mean"
            pooling_mode_mean_sqrt_len_tokens = pooling_mode == "mean_sqrt_len_tokens"
            pooling_mode_weightedmean_tokens = pooling_mode == "weightedmean"
            pooling_mode_lasttoken = pooling_mode == "lasttoken"

        self.word_embedding_dimension = word_embedding_dimension
        self.pooling_mode_cls_token = pooling_mode_cls_token
        self.pooling_mode_mean_tokens = pooling_mode_mean_tokens
        self.pooling_mode_max_tokens = pooling_mode_max_tokens
        self.pooling_mode_mean_sqrt_len_tokens = pooling_mode_mean_sqrt_len_tokens
        self.pooling_mode_weightedmean_tokens = pooling_mode_weightedmean_tokens
        self.pooling_mode_lasttoken = pooling_mode_lasttoken

        self.include_prompt = include_prompt

        pooling_mode_multiplier = sum(
            [
                pooling_mode_cls_token,
                pooling_mode_max_tokens,
                pooling_mode_mean_tokens,
                pooling_mode_mean_sqrt_len_tokens,
                pooling_mode_weightedmean_tokens,
                pooling_mode_lasttoken,
            ]
        )
        self.pooling_output_dimension = pooling_mode_multiplier * word_embedding_dimension

    def __repr__(self):
        return "Pooling({})".format(self.get_config_dict())

    def get_pooling_mode_str(self) -> str:
        """
        Returns the pooling mode as string
        """
        modes = []
        if self.pooling_mode_cls_token:
            modes.append("cls")
        if self.pooling_mode_mean_tokens:
            modes.append("mean")
        if self.pooling_mode_max_tokens:
            modes.append("max")
        if self.pooling_mode_mean_sqrt_len_tokens:
            modes.append("mean_sqrt_len_tokens")
        if self.pooling_mode_weightedmean_tokens:
            modes.append("weightedmean")
        if self.pooling_mode_lasttoken:
            modes.append("lasttoken")

        return "+".join(modes)

    def forward(self, features: Dict[str, Tensor]):
        token_embeddings = features["token_embeddings"]
        attention_mask = features["attention_mask"]
        if not self.include_prompt and "prompt_length" in features:
            attention_mask[:, : features["prompt_length"]] = 0

        ## Pooling strategy
        output_vectors = []
        if self.pooling_mode_cls_token:
            cls_token = features.get("cls_token_embeddings", token_embeddings[:, 0])  # Take first token by default
            output_vectors.append(cls_token)
        if self.pooling_mode_max_tokens:
            input_mask_expanded = (
                attention_mask.unsqueeze(-1).expand(token_embeddings.size()).to(token_embeddings.dtype)
            )
            token_embeddings[input_mask_expanded == 0] = -1e9  # Set padding tokens to large negative value
            max_over_time = torch.max(token_embeddings, 1)[0]
            output_vectors.append(max_over_time)
        if self.pooling_mode_mean_tokens or self.pooling_mode_mean_sqrt_len_tokens:
            input_mask_expanded = (
                attention_mask.unsqueeze(-1).expand(token_embeddings.size()).to(token_embeddings.dtype)
            )
            sum_embeddings = torch.sum(token_embeddings * input_mask_expanded, 1)

            # If tokens are weighted (by WordWeights layer), feature 'token_weights_sum' will be present
            if "token_weights_sum" in features:
                sum_mask = features["token_weights_sum"].unsqueeze(-1).expand(sum_embeddings.size())
            else:
                sum_mask = input_mask_expanded.sum(1)

            sum_mask = torch.clamp(sum_mask, min=1e-9)

            if self.pooling_mode_mean_tokens:
                output_vectors.append(sum_embeddings / sum_mask)
            if self.pooling_mode_mean_sqrt_len_tokens:
                output_vectors.append(sum_embeddings / torch.sqrt(sum_mask))
        if self.pooling_mode_weightedmean_tokens:
            input_mask_expanded = (
                attention_mask.unsqueeze(-1).expand(token_embeddings.size()).to(token_embeddings.dtype)
            )
            # token_embeddings shape: bs, seq, hidden_dim
            weights = (
                torch.arange(start=1, end=token_embeddings.shape[1] + 1)
                .unsqueeze(0)
                .unsqueeze(-1)
                .expand(token_embeddings.size())
                .to(token_embeddings.dtype)
                .to(token_embeddings.device)
            )
            assert weights.shape == token_embeddings.shape == input_mask_expanded.shape
            input_mask_expanded = input_mask_expanded * weights

            sum_embeddings = torch.sum(token_embeddings * input_mask_expanded, 1)

            # If tokens are weighted (by WordWeights layer), feature 'token_weights_sum' will be present
            if "token_weights_sum" in features:
                sum_mask = features["token_weights_sum"].unsqueeze(-1).expand(sum_embeddings.size())
            else:
                sum_mask = input_mask_expanded.sum(1)

            sum_mask = torch.clamp(sum_mask, min=1e-9)
            output_vectors.append(sum_embeddings / sum_mask)
        if self.pooling_mode_lasttoken:
            bs, seq_len, hidden_dim = token_embeddings.shape
            # attention_mask shape: (bs, seq_len)
            # Get shape [bs] indices of the last token (i.e. the last token for each batch item)
            # Use flip and max() to get the last index of 1 in the attention mask

            if torch.jit.is_tracing():
                # Avoid tracing the argmax with int64 input that can not be handled by ONNX Runtime: https://github.com/microsoft/onnxruntime/issues/10068
                attention_mask = attention_mask.to(torch.int32)

            values, indices = attention_mask.flip(1).max(1)
            indices = torch.where(values == 0, seq_len - 1, indices)
            gather_indices = seq_len - indices - 1

            # Turn indices from shape [bs] --> [bs, 1, hidden_dim]
            gather_indices = gather_indices.unsqueeze(-1).repeat(1, hidden_dim)
            gather_indices = gather_indices.unsqueeze(1)
            assert gather_indices.shape == (bs, 1, hidden_dim)

            # Gather along the 1st dim (seq_len) (bs, seq_len, hidden_dim -> bs, hidden_dim)
            # Actually no need for the attention mask as we gather the last token where attn_mask = 1
            # but as we set some indices (which shouldn't be attended to) to 0 with clamp, we
            # use the attention mask to ignore them again
            input_mask_expanded = (
                attention_mask.unsqueeze(-1).expand(token_embeddings.size()).to(token_embeddings.dtype)
            )
            embedding = torch.gather(token_embeddings * input_mask_expanded, 1, gather_indices).squeeze(dim=1)
            output_vectors.append(embedding)

        output_vector = torch.cat(output_vectors, 1)
        features.update({"sentence_embedding": output_vector})
        return features

    def get_sentence_embedding_dimension(self):
        return self.pooling_output_dimension

    def get_config_dict(self):
        return {key: self.__dict__[key] for key in self.config_keys}

    def save(self, output_path):
        with open(os.path.join(output_path, "config.json"), "w") as fOut:
            json.dump(self.get_config_dict(), fOut, indent=2)

    @staticmethod
    def load(input_path):
        with open(os.path.join(input_path, "config.json")) as fIn:
            config = json.load(fIn)

        return Pooling(**config)