LSTM.py 2.44 KB
Newer Older
Rayyyyy's avatar
Rayyyyy committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import torch
from torch import nn
from typing import List
import os
import json


class LSTM(nn.Module):
    """
    Bidirectional LSTM running over word embeddings.
    """

    def __init__(
        self,
        word_embedding_dimension: int,
        hidden_dim: int,
        num_layers: int = 1,
        dropout: float = 0,
        bidirectional: bool = True,
    ):
        nn.Module.__init__(self)
        self.config_keys = ["word_embedding_dimension", "hidden_dim", "num_layers", "dropout", "bidirectional"]
        self.word_embedding_dimension = word_embedding_dimension
        self.hidden_dim = hidden_dim
        self.num_layers = num_layers
        self.dropout = dropout
        self.bidirectional = bidirectional

        self.embeddings_dimension = hidden_dim
        if self.bidirectional:
            self.embeddings_dimension *= 2

        self.encoder = nn.LSTM(
            word_embedding_dimension,
            hidden_dim,
            num_layers=num_layers,
            dropout=dropout,
            bidirectional=bidirectional,
            batch_first=True,
        )

    def forward(self, features):
        token_embeddings = features["token_embeddings"]
        sentence_lengths = torch.clamp(features["sentence_lengths"], min=1)

        packed = nn.utils.rnn.pack_padded_sequence(
            token_embeddings, sentence_lengths.cpu(), batch_first=True, enforce_sorted=False
        )
        packed = self.encoder(packed)
        unpack = nn.utils.rnn.pad_packed_sequence(packed[0], batch_first=True)[0]
        features.update({"token_embeddings": unpack})
        return features

    def get_word_embedding_dimension(self) -> int:
        return self.embeddings_dimension

    def tokenize(self, text: str, **kwargs) -> List[int]:
        raise NotImplementedError()

    def save(self, output_path: str):
        with open(os.path.join(output_path, "lstm_config.json"), "w") as fOut:
            json.dump(self.get_config_dict(), fOut, indent=2)

        torch.save(self.state_dict(), os.path.join(output_path, "pytorch_model.bin"))

    def get_config_dict(self):
        return {key: self.__dict__[key] for key in self.config_keys}

    @staticmethod
    def load(input_path: str):
        with open(os.path.join(input_path, "lstm_config.json"), "r") as fIn:
            config = json.load(fIn)

        weights = torch.load(os.path.join(input_path, "pytorch_model.bin"))
        model = LSTM(**config)
        model.load_state_dict(weights)
        return model