BatchHardTripletLoss.py 11.1 KB
Newer Older
Rayyyyy's avatar
Rayyyyy committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
import torch
from torch import nn, Tensor
from typing import Iterable, Dict
from sentence_transformers import util
from sentence_transformers.SentenceTransformer import SentenceTransformer


class BatchHardTripletLossDistanceFunction:
    """
    This class defines distance functions, that can be used with Batch[All/Hard/SemiHard]TripletLoss
    """

    @staticmethod
    def cosine_distance(embeddings):
        """
        Compute the 2D matrix of cosine distances (1-cosine_similarity) between all embeddings.
        """
        return 1 - util.pytorch_cos_sim(embeddings, embeddings)

    @staticmethod
    def eucledian_distance(embeddings, squared=False):
        """
        Compute the 2D matrix of eucledian distances between all the embeddings.
        Args:
            embeddings: tensor of shape (batch_size, embed_dim)
            squared: Boolean. If true, output is the pairwise squared euclidean distance matrix.
                     If false, output is the pairwise euclidean distance matrix.
        Returns:
            pairwise_distances: tensor of shape (batch_size, batch_size)
        """

        dot_product = torch.matmul(embeddings, embeddings.t())

        # Get squared L2 norm for each embedding. We can just take the diagonal of `dot_product`.
        # This also provides more numerical stability (the diagonal of the result will be exactly 0).
        # shape (batch_size,)
        square_norm = torch.diag(dot_product)

        # Compute the pairwise distance matrix as we have:
        # ||a - b||^2 = ||a||^2  - 2 <a, b> + ||b||^2
        # shape (batch_size, batch_size)
        distances = square_norm.unsqueeze(0) - 2.0 * dot_product + square_norm.unsqueeze(1)

        # Because of computation errors, some distances might be negative so we put everything >= 0.0
        distances[distances < 0] = 0

        if not squared:
            # Because the gradient of sqrt is infinite when distances == 0.0 (ex: on the diagonal)
            # we need to add a small epsilon where distances == 0.0
            mask = distances.eq(0).float()
            distances = distances + mask * 1e-16

            distances = (1.0 - mask) * torch.sqrt(distances)

        return distances


class BatchHardTripletLoss(nn.Module):
    def __init__(
        self,
        model: SentenceTransformer,
        distance_metric=BatchHardTripletLossDistanceFunction.eucledian_distance,
        margin: float = 5,
    ):
        """
        BatchHardTripletLoss takes a batch with (sentence, label) pairs and computes the loss for all possible, valid
        triplets, i.e., anchor and positive must have the same label, anchor and negative a different label. It then looks
        for the hardest positive and the hardest negatives.
        The labels must be integers, with same label indicating sentences from the same class. Your train dataset
        must contain at least 2 examples per label class.

        :param model: SentenceTransformer model
        :param distance_metric: Function that returns a distance between two embeddings. The class SiameseDistanceMetric contains pre-defined metrics that can be used
        :param margin: Negative samples should be at least margin further apart from the anchor than the positive.

        Definitions:
            :Easy triplets: Triplets which have a loss of 0 because
                ``distance(anchor, positive) + margin < distance(anchor, negative)``.
            :Hard triplets: Triplets where the negative is closer to the anchor than the positive, i.e.,
                ``distance(anchor, negative) < distance(anchor, positive)``.
            :Semi-hard triplets: Triplets where the negative is not closer to the anchor than the positive, but which
                still have a positive loss, i.e., ``distance(anchor, positive) < distance(anchor, negative) + margin``.

        References:
            * Source: https://github.com/NegatioN/OnlineMiningTripletLoss/blob/master/online_triplet_loss/losses.py
            * Paper: In Defense of the Triplet Loss for Person Re-Identification, https://arxiv.org/abs/1703.07737
            * Blog post: https://omoindrot.github.io/triplet-loss

        Requirements:
            1. Each sentence must be labeled with a class.
            2. Your dataset must contain at least 2 examples per labels class.
            3. Your dataset should contain hard positives and negatives.

        Inputs:
            +------------------+--------+
            | Texts            | Labels |
            +==================+========+
            | single sentences | class  |
            +------------------+--------+

        Relations:
            * :class:`BatchAllTripletLoss` uses all possible, valid triplets, rather than only the hardest positive and negative samples.
            * :class:`BatchSemiHardTripletLoss` uses only semi-hard triplets, valid triplets, rather than only the hardest positive and negative samples.
            * :class:`BatchHardSoftMarginTripletLoss` does not require setting a margin, while this loss does.

        Example:
            ::

                from sentence_transformers import SentenceTransformer, losses
                from sentence_transformers.readers import InputExample
                from torch.utils.data import DataLoader

                model = SentenceTransformer('distilbert-base-nli-mean-tokens')
                train_examples = [
                    InputExample(texts=['Sentence from class 0'], label=0),
                    InputExample(texts=['Another sentence from class 0'], label=0),
                    InputExample(texts=['Sentence from class 1'], label=1),
                    InputExample(texts=['Sentence from class 2'], label=2)
                ]
                train_batch_size = 2
                train_dataloader = DataLoader(train_examples, shuffle=True, batch_size=train_batch_size)
                train_loss = losses.BatchHardTripletLoss(model=model)
                model.fit(
                    train_objectives=[(train_dataloader, train_loss)],
                    epochs=10,
                )
        """
        super(BatchHardTripletLoss, self).__init__()
        self.sentence_embedder = model
        self.triplet_margin = margin
        self.distance_metric = distance_metric

    def forward(self, sentence_features: Iterable[Dict[str, Tensor]], labels: Tensor):
        rep = self.sentence_embedder(sentence_features[0])["sentence_embedding"]
        return self.batch_hard_triplet_loss(labels, rep)

    # Hard Triplet Loss
    # Source: https://github.com/NegatioN/OnlineMiningTripletLoss/blob/master/online_triplet_loss/losses.py
    # Paper: In Defense of the Triplet Loss for Person Re-Identification, https://arxiv.org/abs/1703.07737
    # Blog post: https://omoindrot.github.io/triplet-loss
    def batch_hard_triplet_loss(self, labels: Tensor, embeddings: Tensor) -> Tensor:
        """Build the triplet loss over a batch of embeddings.
        For each anchor, we get the hardest positive and hardest negative to form a triplet.
        Args:
            labels: labels of the batch, of size (batch_size,)
            embeddings: tensor of shape (batch_size, embed_dim)
            margin: margin for triplet loss
            squared: Boolean. If true, output is the pairwise squared euclidean distance matrix.
                     If false, output is the pairwise euclidean distance matrix.
        Returns:
            Label_Sentence_Triplet: scalar tensor containing the triplet loss
        """
        # Get the pairwise distance matrix
        pairwise_dist = self.distance_metric(embeddings)

        # For each anchor, get the hardest positive
        # First, we need to get a mask for every valid positive (they should have same label)
        mask_anchor_positive = BatchHardTripletLoss.get_anchor_positive_triplet_mask(labels).float()

        # We put to 0 any element where (a, p) is not valid (valid if a != p and label(a) == label(p))
        anchor_positive_dist = mask_anchor_positive * pairwise_dist

        # shape (batch_size, 1)
        hardest_positive_dist, _ = anchor_positive_dist.max(1, keepdim=True)

        # For each anchor, get the hardest negative
        # First, we need to get a mask for every valid negative (they should have different labels)
        mask_anchor_negative = BatchHardTripletLoss.get_anchor_negative_triplet_mask(labels).float()

        # We add the maximum value in each row to the invalid negatives (label(a) == label(n))
        max_anchor_negative_dist, _ = pairwise_dist.max(1, keepdim=True)
        anchor_negative_dist = pairwise_dist + max_anchor_negative_dist * (1.0 - mask_anchor_negative)

        # shape (batch_size,)
        hardest_negative_dist, _ = anchor_negative_dist.min(1, keepdim=True)

        # Combine biggest d(a, p) and smallest d(a, n) into final triplet loss
        tl = hardest_positive_dist - hardest_negative_dist + self.triplet_margin
        tl[tl < 0] = 0
        triplet_loss = tl.mean()

        return triplet_loss

    @staticmethod
    def get_triplet_mask(labels):
        """Return a 3D mask where mask[a, p, n] is True iff the triplet (a, p, n) is valid.
        A triplet (i, j, k) is valid if:
            - i, j, k are distinct
            - labels[i] == labels[j] and labels[i] != labels[k]
        Args:
            labels: tf.int32 `Tensor` with shape [batch_size]
        """
        # Check that i, j and k are distinct
        indices_equal = torch.eye(labels.size(0), device=labels.device).bool()
        indices_not_equal = ~indices_equal
        i_not_equal_j = indices_not_equal.unsqueeze(2)
        i_not_equal_k = indices_not_equal.unsqueeze(1)
        j_not_equal_k = indices_not_equal.unsqueeze(0)

        distinct_indices = (i_not_equal_j & i_not_equal_k) & j_not_equal_k

        label_equal = labels.unsqueeze(0) == labels.unsqueeze(1)
        i_equal_j = label_equal.unsqueeze(2)
        i_equal_k = label_equal.unsqueeze(1)

        valid_labels = ~i_equal_k & i_equal_j

        return valid_labels & distinct_indices

    @staticmethod
    def get_anchor_positive_triplet_mask(labels):
        """Return a 2D mask where mask[a, p] is True iff a and p are distinct and have same label.
        Args:
            labels: tf.int32 `Tensor` with shape [batch_size]
        Returns:
            mask: tf.bool `Tensor` with shape [batch_size, batch_size]
        """
        # Check that i and j are distinct

        indices_equal = torch.eye(labels.size(0), device=labels.device).bool()
        indices_not_equal = ~indices_equal

        # Check if labels[i] == labels[j]
        # Uses broadcasting where the 1st argument has shape (1, batch_size) and the 2nd (batch_size, 1)
        labels_equal = labels.unsqueeze(0) == labels.unsqueeze(1)

        return labels_equal & indices_not_equal

    @staticmethod
    def get_anchor_negative_triplet_mask(labels):
        """Return a 2D mask where mask[a, n] is True iff a and n have distinct labels.
        Args:
            labels: tf.int32 `Tensor` with shape [batch_size]
        Returns:
            mask: tf.bool `Tensor` with shape [batch_size, batch_size]
        """
        # Check if labels[i] != labels[k]
        # Uses broadcasting where the 1st argument has shape (1, batch_size) and the 2nd (batch_size, 1)

        return ~(labels.unsqueeze(0) == labels.unsqueeze(1))