MSEEvaluatorFromDataFrame.py 3.86 KB
Newer Older
Rayyyyy's avatar
Rayyyyy committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
from sentence_transformers.evaluation import SentenceEvaluator
from sentence_transformers import SentenceTransformer
from typing import List, Tuple, Dict
import numpy as np
import logging
import os
import csv


logger = logging.getLogger(__name__)


class MSEEvaluatorFromDataFrame(SentenceEvaluator):
    """
    Computes the mean squared error (x100) between the computed sentence embedding and some target sentence embedding.

    :param dataframe: It must have the following format. Rows contains different, parallel sentences.
        Columns are the respective language codes::

            [{'en': 'My sentence', 'es': 'Sentence in Spanisch', 'fr': 'Sentence in French'...},
             {'en': 'My second sentence', ...}]
    :param combinations: Must be of the format ``[('en', 'es'), ('en', 'fr'), ...]``.
        First entry in a tuple is the source language. The sentence in the respective language will be fetched from
        the dataframe and passed to the teacher model. Second entry in a tuple the the target language. Sentence
        will be fetched from the dataframe and passed to the student model
    """

    def __init__(
        self,
        dataframe: List[Dict[str, str]],
        teacher_model: SentenceTransformer,
        combinations: List[Tuple[str, str]],
        batch_size: int = 8,
        name="",
        write_csv: bool = True,
    ):
        self.combinations = combinations
        self.name = name
        self.batch_size = batch_size

        if name:
            name = "_" + name

        self.csv_file = "mse_evaluation" + name + "_results.csv"
        self.csv_headers = ["epoch", "steps"]
        self.write_csv = write_csv
        self.data = {}

        logger.info("Compute teacher embeddings")
        all_source_sentences = set()
        for src_lang, trg_lang in self.combinations:
            src_sentences = []
            trg_sentences = []

            for row in dataframe:
                if row[src_lang].strip() != "" and row[trg_lang].strip() != "":
                    all_source_sentences.add(row[src_lang])
                    src_sentences.append(row[src_lang])
                    trg_sentences.append(row[trg_lang])

            self.data[(src_lang, trg_lang)] = (src_sentences, trg_sentences)
            self.csv_headers.append("{}-{}".format(src_lang, trg_lang))

        all_source_sentences = list(all_source_sentences)
        all_src_embeddings = teacher_model.encode(all_source_sentences, batch_size=self.batch_size)
        self.teacher_embeddings = {sent: emb for sent, emb in zip(all_source_sentences, all_src_embeddings)}

    def __call__(self, model, output_path: str = None, epoch: int = -1, steps: int = -1):
        model.eval()

        mse_scores = []
        for src_lang, trg_lang in self.combinations:
            src_sentences, trg_sentences = self.data[(src_lang, trg_lang)]

            src_embeddings = np.asarray([self.teacher_embeddings[sent] for sent in src_sentences])
            trg_embeddings = np.asarray(model.encode(trg_sentences, batch_size=self.batch_size))

            mse = ((src_embeddings - trg_embeddings) ** 2).mean()
            mse *= 100
            mse_scores.append(mse)

            logger.info("MSE evaluation on {} dataset - {}-{}:".format(self.name, src_lang, trg_lang))
            logger.info("MSE (*100):\t{:4f}".format(mse))

        if output_path is not None and self.write_csv:
            csv_path = os.path.join(output_path, self.csv_file)
            output_file_exists = os.path.isfile(csv_path)
            with open(csv_path, newline="", mode="a" if output_file_exists else "w", encoding="utf-8") as f:
                writer = csv.writer(f)
                if not output_file_exists:
                    writer.writerow(self.csv_headers)

                writer.writerow([epoch, steps] + mse_scores)

        return -np.mean(mse_scores)  # Return negative score as SentenceTransformers maximizes the performance