run_search_o1.py 28.1 KB
Newer Older
chenzk's avatar
v1.0  
chenzk committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
# run_search_o1.py
import os
import json
import time
import re
from tqdm import tqdm
import numpy as np
import torch
import string
from typing import Optional, Tuple, List, Dict
import argparse

from transformers import AutoTokenizer
from vllm import LLM, SamplingParams

from bing_search import (
    bing_web_search, 
    extract_relevant_info, 
    fetch_page_content, 
    extract_snippet_with_context
)
from evaluate import (
    run_evaluation, 
    extract_answer
)
from prompts import (
    get_gpqa_search_o1_instruction, 
    get_math_search_o1_instruction, 
    get_code_search_o1_instruction, 
    get_singleqa_search_o1_instruction, 
    get_multiqa_search_o1_instruction, 
    get_webpage_to_reasonchain_instruction,
    get_task_instruction_openqa, 
    get_task_instruction_math, 
    get_task_instruction_multi_choice, 
    get_task_instruction_code, 
)

# Define special tokens
BEGIN_SEARCH_QUERY = "<|begin_search_query|>"
END_SEARCH_QUERY = "<|end_search_query|>"
BEGIN_SEARCH_RESULT = "<|begin_search_result|>"
END_SEARCH_RESULT = "<|end_search_result|>"

def parse_args():
    parser = argparse.ArgumentParser(description="Run Search O1 for various datasets and models.")

    # Dataset and split configuration
    parser.add_argument(
        '--dataset_name',
        type=str,
        required=True,
        choices=['gpqa', 'math500', 'aime', 'amc', 'livecode', 'nq', 'triviaqa', 'hotpotqa', '2wiki', 'musique', 'bamboogle'],
        help="Name of the dataset to use."
    )

    parser.add_argument(
        '--split',
        type=str,
        required=True,
        choices=['test', 'diamond', 'main', 'extended'],
        help="Dataset split to use."
    )

    parser.add_argument(
        '--subset_num',
        type=int,
        default=-1,
        help="Number of examples to process. Defaults to all if not specified."
    )

    # Search and document retrieval configuration
    parser.add_argument(
        '--max_search_limit',
        type=int,
        default=10,
        help="Maximum number of searches per question."
    )

    parser.add_argument(
        '--max_turn',
        type=int,
        default=15,
        help="Maximum number of turns."
    )

    parser.add_argument(
        '--top_k',
        type=int,
        default=10,
        help="Maximum number of search documents to return."
    )

    parser.add_argument(
        '--max_doc_len',
        type=int,
        default=3000,
        help="Maximum length of each searched document."
    )

    parser.add_argument(
        '--use_jina',
        type=bool,
        default=True,
        help="Whether to use Jina API for document fetching."
    )

    parser.add_argument(
        '--jina_api_key',
        type=str,
        default='None',
        help="Your Jina API Key to Fetch URL Content."
    )

    # Model configuration
    parser.add_argument(
        '--model_path',
        type=str,
        required=True,
        help="Path to the pre-trained model."
    )

    # Sampling parameters
    parser.add_argument(
        '--temperature',
        type=float,
        default=0.7,
        help="Sampling temperature."
    )

    parser.add_argument(
        '--top_p',
        type=float,
        default=0.8,
        help="Top-p sampling parameter."
    )

    parser.add_argument(
        '--top_k_sampling',
        type=int,
        default=20,
        help="Top-k sampling parameter."
    )

    parser.add_argument(
        '--repetition_penalty',
        type=float,
        default=None,
        help="Repetition penalty. If not set, defaults based on the model."
    )

    parser.add_argument(
        '--max_tokens',
        type=int,
        default=32768,
        help="Maximum number of tokens to generate. If not set, defaults based on the model and dataset."
    )

    # Bing API Configuration
    parser.add_argument(
        '--bing_subscription_key',
        type=str,
        required=True,
        help="Bing Search API subscription key."
    )

    parser.add_argument(
        '--bing_endpoint',
        type=str,
        default="https://api.bing.microsoft.com/v7.0/search",
        help="Bing Search API endpoint."
    )

    return parser.parse_args()

def main():
    args = parse_args()

    # Extract arguments
    dataset_name = args.dataset_name
    split = args.split
    subset_num = args.subset_num
    MAX_SEARCH_LIMIT = args.max_search_limit
    MAX_TURN = args.max_turn
    top_k = args.top_k
    max_doc_len = args.max_doc_len
    model_path = args.model_path
    temperature = args.temperature
    top_p = args.top_p
    top_k_sampling = args.top_k_sampling
    repetition_penalty = args.repetition_penalty
    max_tokens = args.max_tokens
    bing_subscription_key = args.bing_subscription_key
    bing_endpoint = args.bing_endpoint
    use_jina = args.use_jina
    jina_api_key = args.jina_api_key
    
    # Adjust parameters based on dataset
    if dataset_name in ['nq', 'triviaqa', 'hotpotqa', 'musique', 'bamboogle', '2wiki', 'medmcqa', 'pubhealth']:
        MAX_SEARCH_LIMIT = 5
        if dataset_name in ['hotpotqa', 'musique', 'bamboogle', '2wiki']:
            MAX_SEARCH_LIMIT = 10
            MAX_TURN = 15
        top_k = 10
        max_doc_len = 3000
    
    if args.jina_api_key == 'None':
        jina_api_key = None

    # Set default repetition_penalty if not provided
    if repetition_penalty is None:
        repetition_penalty = 1.05 if 'qwq' in model_path.lower() else 1.0

    # Data paths based on dataset
    if dataset_name == 'livecode':
        data_path = f'./data/LiveCodeBench/{split}.json'
    elif dataset_name in ['math500', 'gpqa', 'aime', 'amc']:
        data_path = f'./data/{dataset_name.upper()}/{split}.json'
    else:
        data_path = f'./data/QA_Datasets/{dataset_name}.json'

    print('-----------------------')
    print(f'Using {dataset_name} {split} set.')
    print('-----------------------')

    # ---------------------- Caching Mechanism ----------------------
    # Define cache directories and file paths
    cache_dir = './cache'
    search_cache_path = os.path.join(cache_dir, 'search_cache.json')
    url_cache_path = os.path.join(cache_dir, 'url_cache.json')

    # Ensure cache directory exists
    os.makedirs(cache_dir, exist_ok=True)

    # Load existing caches or initialize empty dictionaries
    if os.path.exists(search_cache_path):
        with open(search_cache_path, 'r', encoding='utf-8') as f:
            search_cache = json.load(f)
    else:
        search_cache = {}

    if os.path.exists(url_cache_path):
        with open(url_cache_path, 'r', encoding='utf-8') as f:
            url_cache = json.load(f)
    else:
        url_cache = {}

    # Function to save caches
    def save_caches():
        with open(search_cache_path, 'w', encoding='utf-8') as f:
            json.dump(search_cache, f, ensure_ascii=False, indent=2)
        with open(url_cache_path, 'w', encoding='utf-8') as f:
            json.dump(url_cache, f, ensure_ascii=False, indent=2)

    # ---------------------- Model Loading ----------------------
    tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
    if tokenizer.pad_token is None:
        tokenizer.pad_token = tokenizer.eos_token
    tokenizer.padding_side = 'left'

    # Define output directory based on model and dataset
    if 'qwq' in model_path.lower():
        if dataset_name in ['math500', 'gpqa', 'aime', 'amc', 'livecode']:
            output_dir = f'./outputs/{dataset_name}.qwq.search_o1'
            if dataset_name == 'gpqa' and (MAX_SEARCH_LIMIT != 5 or top_k != 10):
                output_dir = f'./outputs/runs.analysis/{dataset_name}.qwq.search_o1.{MAX_SEARCH_LIMIT}.{top_k}'
        else:
            output_dir = f'./outputs/runs.qa/{dataset_name}.qwq.search_o1'
    else:
        model_short_name = model_path.split('/')[-1].lower().replace('-instruct', '')
        output_dir = f'./outputs/runs.baselines/{dataset_name}.{model_short_name}.search_o1'
    os.makedirs(output_dir, exist_ok=True)

    # Initialize the LLM
    llm = LLM(
        model=model_path,
        tensor_parallel_size=torch.cuda.device_count(),
        gpu_memory_utilization=0.95,
    )

    # ---------------------- Data Loading ----------------------
    with open(data_path, 'r', encoding='utf-8') as json_file:
        filtered_data = json.load(json_file)

    # ---------------------- Batch Generation Function ----------------------
    def generate_webpage_to_reasonchain_batch(
        original_questions: List[str],
        prev_reasonings: List[str],
        search_queries: List[str],
        documents: List[str],
        dataset_name: str,
        batch_output_records: List[Dict],  # New parameter to collect outputs
        max_tokens: int = 32768,
        coherent: bool = False,
    ) -> List[str]:
        user_prompts = [
            get_webpage_to_reasonchain_instruction(r, sq, doc)
            for r, sq, doc in zip(prev_reasonings, search_queries, documents)
        ]

        prompts = [{"role": "user", "content": up} for up in user_prompts]
        prompts = [tokenizer.apply_chat_template([p], tokenize=False, add_generation_prompt=True) for p in prompts]

        output = llm.generate(
            prompts,
            sampling_params=SamplingParams(
                max_tokens=max_tokens,
                temperature=0.7,
                top_p=0.8,
                top_k=20,
                repetition_penalty=1.05,
            )
        )

        raw_outputs = [out.outputs[0].text for out in output]
        extracted_infos = [extract_answer(raw, mode='infogen') for raw in raw_outputs]

        for i, (p, r, e) in enumerate(zip(prompts, raw_outputs, extracted_infos)):
            batch_output_records.append({
                'prompt': p,
                'raw_output': r,
                'extracted_info': e
            })

        return extracted_infos

    # ---------------------- Preparation of Input Prompts ----------------------
    input_list = []
    for item in filtered_data:
        question = item['Question']

        if dataset_name in ['nq', 'triviaqa', 'hotpotqa', 'musique', 'bamboogle', '2wiki']:
            if dataset_name in ['nq', 'triviaqa']:
                instruction = get_singleqa_search_o1_instruction(MAX_SEARCH_LIMIT)
            elif dataset_name in ['hotpotqa', 'musique', 'bamboogle', '2wiki']:
                instruction = get_multiqa_search_o1_instruction(MAX_SEARCH_LIMIT)
            if 'qwq' in model_path.lower():
                user_prompt = get_task_instruction_openqa(question, model_name='qwq')
            else:
                user_prompt = get_task_instruction_openqa(question)

        elif dataset_name in ['math500', 'aime', 'amc']:
            instruction = get_math_search_o1_instruction(MAX_SEARCH_LIMIT)
            if 'qwq' in model_path.lower():
                user_prompt = get_task_instruction_math(question, model_name='qwq')
            else:
                user_prompt = get_task_instruction_math(question)

        elif dataset_name == 'gpqa':
            instruction = get_gpqa_search_o1_instruction(MAX_SEARCH_LIMIT)
            if 'qwq' in model_path.lower():
                user_prompt = get_task_instruction_multi_choice(question, model_name='qwq')
            elif 'llama' in model_path.lower():
                user_prompt = get_task_instruction_multi_choice(question, model_name='llama')
            else:
                user_prompt = get_task_instruction_multi_choice(question)

        elif dataset_name == 'livecode':
            instruction = get_code_search_o1_instruction(MAX_SEARCH_LIMIT)
            question_title = item.get('question_title', '')
            if 'qwq' in model_path.lower():
                user_prompt = get_task_instruction_code(question, question_title=question_title, model_name='qwq')
            else:
                user_prompt = get_task_instruction_code(question)
        else:
            user_prompt = ""  # Default to empty if dataset not matched

        prompt = [{"role": "user", "content": instruction + user_prompt}]
        prompt = tokenizer.apply_chat_template(prompt, tokenize=False, add_generation_prompt=True)
        input_list.append(prompt)

    if subset_num != -1:
        input_list = input_list[:subset_num]
        filtered_data = filtered_data[:subset_num]

    # Initialize active sequences
    active_sequences = [{
        'item': item,
        'prompt': prompt,
        'output': '',
        'finished': False,
        'history': [],
        'search_count': 0,
        'executed_search_queries': set(),
    } for item, prompt in zip(filtered_data, input_list)]

    # ---------------------- Set Max Tokens ----------------------
    if 'qwq' in model_path.lower():
        if dataset_name in ['aime', 'amc', 'livecode']:
            max_tokens = 32768
        else:
            max_tokens = 20480
    else:
        max_tokens = 8192

    # ---------------------- Generation Function ----------------------
    def run_generation(sequences: List[Dict], max_tokens: int) -> List:
        prompts = [s['prompt'] for s in sequences]
        sampling_params = SamplingParams(
            max_tokens=max_tokens,
            temperature=temperature,
            top_p=top_p,
            top_k=top_k_sampling,
            repetition_penalty=repetition_penalty,
            stop=[END_SEARCH_QUERY, tokenizer.eos_token],
            include_stop_str_in_output=True,
        )
        output_list = llm.generate(prompts, sampling_params=sampling_params)
        return output_list

    # Function to extract text between two tags
    def extract_between(text: str, start_tag: str, end_tag: str) -> Optional[str]:
        pattern = re.escape(start_tag) + r"(.*?)" + re.escape(end_tag)
        matches = re.findall(pattern, text, flags=re.DOTALL)
        if matches:
            return matches[-1].strip()
        return None

    def replace_recent_steps(origin_str, replace_str):
        """
        Replaces specific steps in the original reasoning steps with new steps.
        If a replacement step contains "DELETE THIS STEP", that step is removed.

        Parameters:
        - origin_str (str): The original reasoning steps.
        - replace_str (str): The steps to replace or delete.

        Returns:
        - str: The updated reasoning steps after applying replacements.
        """

        def parse_steps(text):
            """
            Parses the reasoning steps from a given text.

            Parameters:
            - text (str): The text containing reasoning steps.

            Returns:
            - dict: A dictionary mapping step numbers to their content.
            """
            step_pattern = re.compile(r"Step\s+(\d+):\s*")
            steps = {}
            current_step_num = None
            current_content = []

            for line in text.splitlines():
                step_match = step_pattern.match(line)
                if step_match:
                    # If there's an ongoing step, save its content
                    if current_step_num is not None:
                        steps[current_step_num] = "\n".join(current_content).strip()
                    current_step_num = int(step_match.group(1))
                    content = line[step_match.end():].strip()
                    current_content = [content] if content else []
                else:
                    if current_step_num is not None:
                        current_content.append(line)
            
            # Save the last step if any
            if current_step_num is not None:
                steps[current_step_num] = "\n".join(current_content).strip()
            
            return steps

        # Parse the original and replacement steps
        origin_steps = parse_steps(origin_str)
        replace_steps = parse_steps(replace_str)

        # Apply replacements
        for step_num, content in replace_steps.items():
            if "DELETE THIS STEP" in content:
                # Remove the step if it exists
                if step_num in origin_steps:
                    del origin_steps[step_num]
            else:
                # Replace or add the step
                origin_steps[step_num] = content

        # Sort the steps by step number
        sorted_steps = sorted(origin_steps.items())

        # Reconstruct the reasoning steps as a single string
        new_reasoning_steps = "\n\n".join([f"{content}" for num, content in sorted_steps])

        return new_reasoning_steps

    # ---------------------- Initialize Collection Structure ----------------------
    # Initialize a list to collect batch outputs
    batch_output_records = []

    start_time = time.time()
    turn = 0

    # Main loop until all sequences are finished or maximum turns reached
    while True:
        # Identify sequences that need generation
        sequences_needing_generation = [seq for seq in active_sequences if not seq['finished']]

        if sequences_needing_generation:
            turn += 1
            print(f'\n-------------- Turn {turn} --------------')
            print(f"We have {len(sequences_needing_generation)} sequences needing generation...")
            outputs = run_generation(sequences_needing_generation, max_tokens)
            print("Generation completed, processing outputs...")

            # Initialize batch variables
            batch_relevant_info = []
            batch_original_questions = []
            batch_prev_reasonings = []
            batch_search_queries = []
            batch_documents = []
            batch_sequences = []

            # Collect URLs to fetch across all sequences
            all_urls_to_fetch = set()
            url_snippets = {}
            url_sequence_map = {}  # Map URL to list of sequences needing it

            # Process each sequence and collect URLs
            for seq, out in zip(sequences_needing_generation, outputs):
                text = out.outputs[0].text
                seq['history'].append(text)
                # Append generated text to prompt and output
                seq['prompt'] += text
                seq['output'] += text

                # Extract search query
                search_query = extract_between(text, BEGIN_SEARCH_QUERY, END_SEARCH_QUERY)

                # If a search query is present and needs to be executed
                if search_query and seq['output'].rstrip().endswith(END_SEARCH_QUERY):
                    if seq['search_count'] < MAX_SEARCH_LIMIT and search_query not in seq['executed_search_queries']:
                        # Execute search, use cache if available
                        if search_query in search_cache:
                            results = search_cache[search_query]
                            print(f"Using cached search results for query: \"{search_query}\"")
                        else:
                            try:
                                results = bing_web_search(search_query, bing_subscription_key, bing_endpoint, market='en-US', language='en')
                                search_cache[search_query] = results
                                print(f"Executed and cached search for query: \"{search_query}\"")
                            except Exception as e:
                                print(f"Error during search query '{search_query}': {e}")
                                search_cache[search_query] = {}
                                results = {}

                        # Extract relevant information from Bing search results
                        relevant_info = extract_relevant_info(results)[:top_k]
                        seq['relevant_info'] = relevant_info

                        # Extract URLs and snippets
                        urls_to_fetch = [it['url'] for it in relevant_info]
                        snippets = {info['url']: info['snippet'] for info in relevant_info if 'snippet' in info}

                        # Filter URLs that are not cached
                        urls_to_fetch_filtered = [u for u in urls_to_fetch if u not in url_cache]
                        cached_urls = [u for u in urls_to_fetch if u in url_cache]

                        # Store info for all_urls_to_fetch and url_snippets
                        for url in urls_to_fetch_filtered:
                            all_urls_to_fetch.add(url)
                            url_snippets[url] = snippets.get(url, "")

                        all_reasoning_steps = seq['output']
                        all_reasoning_steps = all_reasoning_steps.replace('\n\n', '\n').split("\n")

                        truncated_prev_reasoning = ""
                        for i, step in enumerate(all_reasoning_steps):
                            truncated_prev_reasoning += f"Step {i + 1}: {step}\n\n"

                        prev_steps = truncated_prev_reasoning.split('\n\n')
                        if len(prev_steps) <= 5:
                            truncated_prev_reasoning = '\n\n'.join(prev_steps)
                        else:
                            truncated_prev_reasoning = ''
                            for i, step in enumerate(prev_steps):
                                if i == 0 or i >= len(prev_steps) - 4 or BEGIN_SEARCH_QUERY in step or BEGIN_SEARCH_RESULT in step:
                                    truncated_prev_reasoning += step + '\n\n'
                                else:
                                    if truncated_prev_reasoning[-len('\n\n...\n\n'):] != '\n\n...\n\n':
                                        truncated_prev_reasoning += '...\n\n'
                        truncated_prev_reasoning = truncated_prev_reasoning.strip('\n')

                        # Collect parameters for batch processing
                        batch_relevant_info.append(relevant_info)
                        batch_original_questions.append(seq['item']['Question'])
                        batch_prev_reasonings.append(truncated_prev_reasoning)
                        batch_search_queries.append(search_query)
                        batch_sequences.append(seq)

                        # Update search count and executed queries
                        seq['search_count'] += 1
                        seq['executed_search_queries'].add(search_query)

                    elif seq['search_count'] >= MAX_SEARCH_LIMIT:
                        limit_message = f"\n{BEGIN_SEARCH_RESULT}\nThe maximum search limit is exceeded. You are not allowed to search.\n{END_SEARCH_RESULT}\n"
                        seq['prompt'] += limit_message
                        seq['output'] += limit_message
                        seq['history'].append(limit_message)
                        print(f"Search limit reached for query: \"{search_query}\"")

                    elif search_query in seq['executed_search_queries']:
                        limit_message = f"\n{BEGIN_SEARCH_RESULT}\nYou have searched this query. Please refer to previous results.\n{END_SEARCH_RESULT}\n"
                        seq['prompt'] += limit_message
                        seq['output'] += limit_message
                        seq['history'].append(limit_message)
                        print(f"Repeated search for query: \"{search_query}\"")

                else:
                    # If no search query needs to be executed, mark the sequence as finished
                    seq['finished'] = True
                    print("Sequence marked as complete.")

            # Batch fetch all URLs at once to optimize speed
            if all_urls_to_fetch:
                print(f"Fetching {len(all_urls_to_fetch)} URLs...")
                try:
                    fetched_contents = fetch_page_content(
                        list(all_urls_to_fetch),
                        use_jina=use_jina,
                        jina_api_key=jina_api_key,
                        # snippets=url_snippets  # Do not pass snippets when updating url_cache directly
                    )
                    print(f"Fetched {len(fetched_contents)} URLs successfully.")
                except Exception as e:
                    print(f"Error during batch URL fetching: {e}")
                    fetched_contents = {url: f"Error fetching URL: {e}" for url in all_urls_to_fetch}
                # Update cache with fetched contents
                for url, content in fetched_contents.items():
                    url_cache[url] = content

            # After fetching, prepare formatted documents for batch processing
            for relevant_info in batch_relevant_info:
                formatted_documents = ""
                for i, doc_info in enumerate(relevant_info):
                    url = doc_info['url']
                    raw_context = url_cache.get(url, "")
                    doc_info['snippet'] = doc_info['snippet'].replace('<b>','').replace('</b>','')            
                    success, filtered_context = extract_snippet_with_context(raw_context, doc_info['snippet'], context_chars=max_doc_len)
                    if success:
                        context = filtered_context
                    else:
                        context = raw_context[:max_doc_len*2]

                    doc_info['context'] = context
                    formatted_documents += f"**Web Page {i + 1}:**\n"
                    formatted_documents += json.dumps(doc_info, ensure_ascii=False, indent=2) + "\n"
                    
                batch_documents.append(formatted_documents)

            # After fetching, prepare for batch processing if there are any
            if batch_sequences:
                print(f"Batch processing {len(batch_sequences)} sequences with generate_webpage_to_reasonchain_batch...")
                webpage_analyses = generate_webpage_to_reasonchain_batch(
                    original_questions=batch_original_questions,
                    prev_reasonings=batch_prev_reasonings,
                    search_queries=batch_search_queries,
                    documents=batch_documents,
                    dataset_name=dataset_name,
                    batch_output_records=batch_output_records,  # Pass the collection list
                    max_tokens=max_tokens,
                )
                print("Batch generation completed, assigning outputs to sequences...")

                for seq, analysis in zip(batch_sequences, webpage_analyses):
                    if isinstance(analysis, str):
                        append_text = f"\n\n{BEGIN_SEARCH_RESULT}{analysis}{END_SEARCH_RESULT}\n\n"
                        seq['prompt'] += append_text
                        seq['output'] += append_text
                        seq['history'].append(append_text)
                    else:
                        append_text = replace_recent_steps(seq['output'], analysis)
                        seq['prompt'] += append_text
                        seq['output'] += append_text
                        seq['history'].append(append_text)

        # Check if all sequences are finished
        unfinished = [seq for seq in active_sequences if not seq['finished']]
        if not unfinished:
            break
        else:
            if turn >= MAX_TURN:
                print(f"Maximum number of turns ({MAX_TURN}) reached, stopping.")
                break

    total_time = time.time() - start_time

    # ---------------------- Save Batch Output Records to JSON File ----------------------
    # Define output JSON file path
    t = time.localtime()
    batch_output_file = os.path.join(output_dir, f'{split}.{t.tm_mon}.{t.tm_mday},{t.tm_hour}:{t.tm_min}.info_extract.json')

    # Save batch_output_records to JSON file
    with open(batch_output_file, 'w', encoding='utf-8') as f:
        json.dump(batch_output_records, f, ensure_ascii=False, indent=2)

    print(f"Batch outputs saved to {batch_output_file}")

    # Prepare output list for evaluation
    output_list = [seq['output'] for seq in active_sequences]

    # Run evaluation
    run_evaluation(filtered_data, input_list, output_list, dataset_name, output_dir, total_time, split)

    # ---------------------- Update Search and URL Cache ----------------------
    print('Updating Search and URL Cache...')
    # Load existing caches or initialize empty dictionaries
    if os.path.exists(search_cache_path):
        with open(search_cache_path, 'r', encoding='utf-8') as f:
            search_cache_new = json.load(f)
    else:
        search_cache_new = {}

    if os.path.exists(url_cache_path):
        with open(url_cache_path, 'r', encoding='utf-8') as f:
            url_cache_new = json.load(f)
    else:
        url_cache_new = {}

    search_cache.update(search_cache_new)
    url_cache.update(url_cache_new)

    save_caches()

    print("Process completed.")

if __name__ == "__main__":
    main()