run_rag_agent.py 24 KB
Newer Older
chenzk's avatar
v1.0  
chenzk committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
# run_rag_agent.py
import os
import json
import time
import re
import requests
from tqdm import tqdm
import numpy as np
import torch
from typing import Optional, Tuple, List, Dict
import argparse

from transformers import AutoTokenizer
from vllm import LLM, SamplingParams
from bing_search import bing_web_search, extract_relevant_info, fetch_page_content
from evaluate import run_evaluation
from prompts import (
    get_singleqa_rag_agent_instruction, 
    get_multiqa_rag_agent_instruction, 
    get_gpqa_rag_agent_instruction, 
    get_math_rag_agent_instruction, 
    get_code_rag_agent_instruction,
    get_task_instruction_openqa, 
    get_task_instruction_math, 
    get_task_instruction_multi_choice, 
    get_task_instruction_code, 
)

# Define special symbols
BEGIN_SEARCH_QUERY = "<|begin_search_query|>"
END_SEARCH_QUERY = "<|end_search_query|>"
BEGIN_SEARCH_RESULT = "<|begin_search_result|>"
END_SEARCH_RESULT = "<|end_search_result|>"
BEGIN_URL = "<|begin_url|>"
END_URL = "<|end_url|>"
BEGIN_FULL_PAGE = "<|begin_full_page|>"
END_FULL_PAGE = "<|end_full_page|>"

def parse_args():
    parser = argparse.ArgumentParser(description="Run RAG Agent for various datasets and models.")

    # Dataset and split configuration
    parser.add_argument(
        '--dataset_name',
        type=str,
        required=True,
        choices=['gpqa', 'math500', 'aime', 'amc', 'livecode', 'nq', 'triviaqa', 'hotpotqa', '2wiki', 'musique', 'bamboogle', 'medmcqa', 'pubhealth'],
        help="Name of the dataset to use."
    )

    parser.add_argument(
        '--split',
        type=str,
        required=True,
        choices=['test', 'diamond', 'main', 'extended'],
        help="Dataset split to use."
    )

    parser.add_argument(
        '--subset_num',
        type=int,
        default=-1,
        help="Number of examples to process. Defaults to all if not specified."
    )

    # RAG Agent configuration
    parser.add_argument(
        '--max_search_limit',
        type=int,
        default=5,
        help="Maximum number of searches per question."
    )

    parser.add_argument(
        '--max_url_fetch',
        type=int,
        default=5,
        help="Maximum number of URL fetches per question."
    )

    parser.add_argument(
        '--max_turn',
        type=int,
        default=10,
        help="Maximum number of turns."
    )

    parser.add_argument(
        '--top_k',
        type=int,
        default=10,
        help="Maximum number of search documents to return."
    )

    # Model configuration
    parser.add_argument(
        '--model_path',
        type=str,
        required=True,
        help="Path to the pre-trained model."
    )

    parser.add_argument(
        '--use_jina',
        type=bool,
        default=True,
        help="Whether to use Jina API for document fetching."
    )

    parser.add_argument(
        '--jina_api_key',
        type=str,
        default='None',
        help="Your Jina API Key to Fetch URL Content."
    )

    # Sampling parameters
    parser.add_argument(
        '--temperature',
        type=float,
        default=0.7,
        help="Sampling temperature."
    )

    parser.add_argument(
        '--top_p',
        type=float,
        default=0.8,
        help="Top-p sampling parameter."
    )

    parser.add_argument(
        '--top_k_sampling',
        type=int,
        default=20,
        help="Top-k sampling parameter."
    )

    parser.add_argument(
        '--repetition_penalty',
        type=float,
        default=None,
        help="Repetition penalty. If not set, defaults based on the model."
    )

    parser.add_argument(
        '--max_tokens',
        type=int,
        default=32768,
        help="Maximum number of tokens to generate. If not set, defaults based on the model and dataset."
    )

    # Bing API Configuration
    parser.add_argument(
        '--bing_subscription_key',
        type=str,
        required=True,
        help="Bing Search API subscription key."
    )

    parser.add_argument(
        '--bing_endpoint',
        type=str,
        default="https://api.bing.microsoft.com/v7.0/search",
        help="Bing Search API endpoint."
    )

    return parser.parse_args()

def main():
    args = parse_args()

    # Extract arguments
    dataset_name = args.dataset_name
    split = args.split
    subset_num = args.subset_num
    MAX_SEARCH_LIMIT = args.max_search_limit
    MAX_URL_FETCH = args.max_url_fetch
    MAX_TURN = args.max_turn
    top_k = args.top_k
    model_path = args.model_path
    temperature = args.temperature
    top_p = args.top_p
    top_k_sampling = args.top_k_sampling
    repetition_penalty = args.repetition_penalty
    max_tokens = args.max_tokens
    bing_subscription_key = args.bing_subscription_key
    bing_endpoint = args.bing_endpoint
    use_jina = args.use_jina
    jina_api_key = args.jina_api_key

    # Adjust parameters based on dataset
    if dataset_name in ['nq', 'triviaqa', 'hotpotqa', 'musique', 'bamboogle', '2wiki', 'medmcqa', 'pubhealth']:
        MAX_SEARCH_LIMIT = 5
        MAX_URL_FETCH = 5
        MAX_TURN = 10
        top_k = 5

    # Set default repetition_penalty if not provided
    if repetition_penalty is None:
        repetition_penalty = 1.05 if 'qwq' in model_path.lower() else 1.0
    
    if args.jina_api_key == 'None':
        jina_api_key = None

    # Data paths based on dataset
    if dataset_name == 'livecode':
        data_path = f'./data/LiveCodeBench/{split}.json'
    elif dataset_name in ['math500', 'gpqa', 'aime', 'amc']:
        data_path = f'./data/{dataset_name.upper()}/{split}.json'
    else:
        data_path = f'./data/QA_Datasets/{dataset_name}.json'

    # ---------------------- Caching Mechanism ----------------------
    # Define cache directories and file paths
    cache_dir = './cache'
    search_cache_path = os.path.join(cache_dir, 'search_cache.json')
    url_cache_path = os.path.join(cache_dir, 'url_cache.json')

    # Ensure cache directory exists
    os.makedirs(cache_dir, exist_ok=True)

    # Load existing caches or initialize empty dictionaries
    if os.path.exists(search_cache_path):
        with open(search_cache_path, 'r', encoding='utf-8') as f:
            search_cache = json.load(f)
    else:
        search_cache = {}

    if os.path.exists(url_cache_path):
        with open(url_cache_path, 'r', encoding='utf-8') as f:
            url_cache = json.load(f)
    else:
        url_cache = {}

    # Define function to save caches
    def save_caches():
        with open(search_cache_path, 'w', encoding='utf-8') as f:
            json.dump(search_cache, f, ensure_ascii=False, indent=2)
        with open(url_cache_path, 'w', encoding='utf-8') as f:
            json.dump(url_cache, f, ensure_ascii=False, indent=2)

    # ---------------------- Model Loading ----------------------
    tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
    if tokenizer.pad_token is None:
        tokenizer.pad_token = tokenizer.eos_token
    tokenizer.padding_side = 'left'

    # Define output directory based on model and dataset
    if 'qwq' in model_path.lower():
        if dataset_name in ['math500', 'gpqa', 'aime', 'amc', 'livecode']:
            output_dir = f'./outputs/{dataset_name}.qwq.rag_agent'
        else:
            output_dir = f'./outputs/runs.qa/{dataset_name}.qwq.rag_agent'
    else:
        model_short_name = model_path.split('/')[-1].lower().replace('-instruct', '')
        output_dir = f'./outputs/runs.baselines/{dataset_name}.{model_short_name}.rag_agent'
    os.makedirs(output_dir, exist_ok=True)

    # Initialize the LLM
    llm = LLM(
        model=model_path,
        tensor_parallel_size=torch.cuda.device_count(),
        gpu_memory_utilization=0.95,
    )

    # ---------------------- Data Loading ----------------------
    with open(data_path, 'r', encoding='utf-8') as json_file:
        filtered_data = json.load(json_file)

    # ---------------------- Prepare Input ----------------------
    input_list = []
    for item in filtered_data:
        question = item['Question']
        if dataset_name in ['nq', 'triviaqa', 'hotpotqa', 'musique', 'bamboogle', '2wiki']:
            if dataset_name in ['nq', 'triviaqa']:
                instruction = get_singleqa_rag_agent_instruction(MAX_SEARCH_LIMIT, MAX_URL_FETCH)
            elif dataset_name in ['hotpotqa', 'musique', 'bamboogle', '2wiki']:
                instruction = get_multiqa_rag_agent_instruction(MAX_SEARCH_LIMIT, MAX_URL_FETCH)
            if 'qwq' in model_path.lower():
                user_prompt = get_task_instruction_openqa(question, model_name='qwq')
            else:
                user_prompt = get_task_instruction_openqa(question)

        elif dataset_name in ['math500', 'aime', 'amc']:
            instruction = get_math_rag_agent_instruction(MAX_SEARCH_LIMIT, MAX_URL_FETCH)
            if 'qwq' in model_path.lower():
                user_prompt = get_task_instruction_math(question, model_name='qwq')
            else:
                user_prompt = get_task_instruction_math(question)

        elif dataset_name == 'gpqa':
            instruction = get_gpqa_rag_agent_instruction(MAX_SEARCH_LIMIT, MAX_URL_FETCH)
            if 'qwq' in model_path.lower():
                user_prompt = get_task_instruction_multi_choice(question, model_name='qwq')
            elif 'llama' in model_path.lower():
                user_prompt = get_task_instruction_multi_choice(question, model_name='llama')
            else:
                user_prompt = get_task_instruction_multi_choice(question)

        elif dataset_name == 'livecode':
            instruction = get_code_rag_agent_instruction(MAX_SEARCH_LIMIT, MAX_URL_FETCH)
            question_title = item.get('question_title', '')
            if 'qwq' in model_path.lower():
                user_prompt = get_task_instruction_code(question, question_title=question_title, model_name='qwq')
            else:
                user_prompt = get_task_instruction_code(question)
        else:
            user_prompt = ""  # Default to empty if dataset not matched

        prompt = [{"role": "user", "content": instruction + user_prompt}]
        prompt = tokenizer.apply_chat_template(prompt, tokenize=False, add_generation_prompt=True)
        input_list.append(prompt)

    if subset_num != -1:
        input_list = input_list[:subset_num]
        filtered_data = filtered_data[:subset_num]

    # Initialize active sequences with search and URL fetch counters
    active_sequences = [{
        'item': item,
        'prompt': prompt,
        'output': '',
        'finished': False,
        'history': [],
        'pending_operations': [],  # Queue of operations to execute
        'executed_search_queries': set(),
        'executed_url_fetches': set(),
        'search_count': 0  # Search counter
    } for item, prompt in zip(filtered_data, input_list)]

    # ---------------------- Set Max Tokens ----------------------
    if 'qwq' in model_path.lower():
        if dataset_name in ['aime', 'amc', 'livecode']:
            max_tokens = 32768
        else:
            max_tokens = 20480
    else:
        max_tokens = 8192

    # ---------------------- Generation Function ----------------------
    def run_generation(sequences, max_tokens):
        """
        Run LLM generation on provided sequences.
        """
        prompts = [s['prompt'] for s in sequences]
        sampling_params = SamplingParams(
            max_tokens=max_tokens,
            temperature=temperature, 
            top_p=top_p, 
            top_k=top_k_sampling, 
            repetition_penalty=repetition_penalty,
            stop=[END_SEARCH_QUERY, END_URL, tokenizer.eos_token],
            include_stop_str_in_output=True,
        )
        output_list = llm.generate(prompts, sampling_params=sampling_params)
        return output_list

    # Function to extract text between two tags
    def extract_between(text: str, start_tag: str, end_tag: str) -> Optional[str]:
        pattern = re.escape(start_tag) + r"(.*?)" + re.escape(end_tag)
        matches = re.findall(pattern, text, flags=re.DOTALL)
        if matches:
            return matches[-1].strip()
        return None

    start_time = time.time()
    turn = 0

    # Main loop until all sequences are completed
    while True:
        # Separate sequences with pending operations and those needing generation
        sequences_with_pending_ops = [seq for seq in active_sequences if not seq['finished'] and seq['pending_operations']]
        sequences_needing_generation = [seq for seq in active_sequences if not seq['finished'] and not seq['pending_operations']]

        # First, handle pending operations
        if sequences_with_pending_ops:
            print(f"{len(sequences_with_pending_ops)} sequences have pending operations. Executing...")
            for seq in sequences_with_pending_ops:
                # Execute the next pending operation
                operation = seq['pending_operations'].pop(0)  # FIFO
                op_type = operation['type']
                content = operation['content']

                if op_type == 'search':
                    query = content
                    if query in search_cache:
                        results = search_cache[query]
                        print(f"Using cached search results for query: {query}")
                    else:
                        try:
                            # Execute search and cache results
                            results = bing_web_search(query, bing_subscription_key, bing_endpoint, market='en-US', language='en')
                            search_cache[query] = results
                            print(f"Executed and cached search for query: {query}")
                        except Exception as e:
                            print(f"Error during search query '{query}': {e}")
                            search_cache[query] = {}
                            results = {}
                    relevant_info = extract_relevant_info(results)[:top_k]
                    search_result_str = json.dumps(relevant_info, ensure_ascii=False, indent=2)
                    # Append search results to the prompt
                    append_text = f"\n{BEGIN_SEARCH_RESULT}\n{search_result_str}\n{END_SEARCH_RESULT}\n"
                    seq['prompt'] += append_text
                    seq['output'] += append_text
                    # Update history
                    seq['history'].append(append_text)
                    # Increment search count
                    seq['search_count'] += 1

                elif op_type == 'fetch_url':
                    urls = content
                    # Calculate remaining URL fetches
                    remaining_fetches = MAX_URL_FETCH - len(seq['executed_url_fetches'])
                    if remaining_fetches <= 0:
                        # Reached URL fetch limit, add limit message and mark sequence as finished
                        limit_message = f"\n{BEGIN_FULL_PAGE}\nThe maximum number of URL fetches has been reached. You are not allowed to fetch more URLs.\n{END_FULL_PAGE}\n"
                        seq['prompt'] += limit_message
                        seq['output'] += limit_message
                        seq['history'].append(limit_message)
                        print("Reached URL fetch limit. Sequence marked as finished.")
                        continue

                    # Split and clean URLs
                    urls_to_fetch = [u.strip() for u in urls.split(",")]
                    # Filter already fetched URLs
                    urls_to_fetch = [u for u in urls_to_fetch if u not in seq['executed_url_fetches']]
                    # Limit the number of URLs to fetch
                    urls_to_fetch = urls_to_fetch[:remaining_fetches]

                    if not urls_to_fetch:
                        print("All requested URLs have been fetched or exceeded the limit.")
                        continue

                    # Batch fetch page content, considering cache
                    urls_to_fetch_filtered = [u for u in urls_to_fetch if u not in url_cache]
                    cached_urls = [u for u in urls_to_fetch if u in url_cache]
                    
                    fetched_contents = []

                    # Use cached URL content
                    for url in cached_urls:
                        content = url_cache[url]
                        print(f"Using cached URL content for URL: {url}")
                        fetched_contents.append((url, content))
                    
                    # Batch fetch uncached URLs
                    if urls_to_fetch_filtered:
                        try:
                            # Batch pass uncached URLs
                            contents = fetch_page_content(urls_to_fetch_filtered, use_jina=use_jina, jina_api_key=jina_api_key)
                            for url, content in contents.items():
                                url_cache[url] = content
                                print(f"Fetched and cached URL content for URL: {url}")
                                fetched_contents.append((url, content))
                        except Exception as e:
                            for url in urls_to_fetch_filtered:
                                content = f"Error fetching URL: {e}"
                                url_cache[url] = content
                                fetched_contents.append((url, content))
                                print(f"Error fetching URL '{url}': {e}")

                    # Update fetched URLs
                    for url, _ in fetched_contents:
                        seq['executed_url_fetches'].add(url)

                    # Construct full page content string
                    fetched_pages = dict(fetched_contents)
                    full_page_str = json.dumps(fetched_pages, ensure_ascii=False, indent=2)
                    # Append full page content to the prompt
                    append_text = f"\n{BEGIN_FULL_PAGE}\n{full_page_str}\n{END_FULL_PAGE}\n"
                    seq['prompt'] += append_text
                    seq['output'] += append_text
                    # Update history
                    seq['history'].append(append_text)

                    print(f"Fetched and cached {len(fetched_contents)} URLs.")

                    # Check if URL fetch limit is reached
                    if len(seq['executed_url_fetches']) >= MAX_URL_FETCH:
                        limit_message = f"\n{BEGIN_FULL_PAGE}\nThe maximum number of URL fetches has been reached. You are not allowed to fetch more URLs.\n{END_FULL_PAGE}\n"
                        seq['prompt'] += limit_message
                        seq['output'] += limit_message
                        seq['history'].append(limit_message)
                        print("Reached URL fetch limit. Sequence marked as finished.")

        # Continue to the next iteration if there are pending operations
        if sequences_with_pending_ops:
            continue  # Process operations first

        # Handle sequences needing generation
        if sequences_needing_generation:
            turn += 1
            print(f"Turn {turn}: {len(sequences_needing_generation)} sequences need generation. Generating with LLM...")
            outputs = run_generation(sequences_needing_generation, max_tokens)
            print("Generation complete. Processing outputs...")

            # Process each generated output
            for seq, out in zip(sequences_needing_generation, outputs):
                text = out.outputs[0].text
                seq['history'].append(text)
                # Append generated text to prompt and output
                seq['prompt'] += text
                seq['output'] += text

                # Check if the generated content contains search queries or URL fetch requests
                search_query = extract_between(text, BEGIN_SEARCH_QUERY, END_SEARCH_QUERY)
                url_fetch = extract_between(text, BEGIN_URL, END_URL)

                if search_query:
                    # Check if search limit is not exceeded
                    if seq['search_count'] < MAX_SEARCH_LIMIT:
                        # Check if this search query has not been executed
                        if search_query not in seq['executed_search_queries']:
                            # Add search operation to pending queue
                            seq['pending_operations'].append({'type': 'search', 'content': search_query})
                            seq['executed_search_queries'].add(search_query)
                            print(f"Added pending search operation for query: {search_query}")
                        else:
                            print(f"Search query already executed: {search_query}")
                    else:
                        # Add limit message if search limit is exceeded
                        limit_message = f"\n{BEGIN_SEARCH_RESULT}\nThe maximum search limit is exceeded. You are not allowed to search.\n{END_SEARCH_RESULT}\n"
                        seq['prompt'] += limit_message
                        seq['output'] += limit_message
                        seq['history'].append(limit_message)
                        print(f"Search limit exceeded for query: {search_query}")

                if url_fetch:
                    # Check if URL fetch limit is not exceeded
                    if len(seq['executed_url_fetches']) < MAX_URL_FETCH:
                        # Split and check if URLs have already been fetched
                        urls = [u.strip() for u in url_fetch.split(",")]
                        urls_to_fetch = [u for u in urls if u not in seq['executed_url_fetches']]
                        if urls_to_fetch:
                            # Add URL fetch operation to pending queue
                            seq['pending_operations'].append({'type': 'fetch_url', 'content': ', '.join(urls_to_fetch)})
                            print(f"Added pending URL fetch operation for URLs: {urls_to_fetch}")
                        else:
                            print(f"All requested URLs have been fetched or exceeded the limit: {urls}")
                    else:
                        # Add limit message if URL fetch limit is exceeded
                        limit_message = f"\n{BEGIN_FULL_PAGE}\nThe maximum number of URL fetches has been reached. You are not allowed to fetch more URLs.\n{END_FULL_PAGE}\n"
                        seq['prompt'] += limit_message
                        seq['output'] += limit_message
                        seq['history'].append(limit_message)
                        print("URL fetch limit exceeded.")

                # If no new operations are added, mark sequence as finished
                if not search_query and not url_fetch:
                    seq['finished'] = True
                    print("Sequence marked as finished.")

        # Check if all sequences are finished
        unfinished = [seq for seq in active_sequences if not seq['finished']]
        if not unfinished:
            break
        else:
            if turn >= MAX_TURN:
                print(f"Exceeded maximum number of turns ({MAX_TURN}). Stopping.")
                break
            # Optionally, implement a delay or other logic to prevent infinite loops
            pass

    total_time = time.time() - start_time

    # Collect all outputs
    output_list = [seq['output'] for seq in active_sequences]

    # ---------------------- Evaluation ----------------------
    print("Evaluating generated answers...")
    run_evaluation(
        filtered_data=filtered_data,
        input_list=input_list,
        output_list=output_list,
        dataset_name=dataset_name,
        output_dir=output_dir,
        total_time=total_time,
        split=split,
    )

    # ---------------------- Update Search and URL Cache ----------------------
    print('Updating Search and URL Cache...')
    # Load existing caches or initialize empty dictionaries
    if os.path.exists(search_cache_path):
        with open(search_cache_path, 'r', encoding='utf-8') as f:
            search_cache_new = json.load(f)
    else:
        search_cache_new = {}

    if os.path.exists(url_cache_path):
        with open(url_cache_path, 'r', encoding='utf-8') as f:
            url_cache_new = json.load(f)
    else:
        url_cache_new = {}

    search_cache.update(search_cache_new)
    url_cache.update(url_cache_new)

    save_caches()

    print("Process completed.")

if __name__ == "__main__":
    main()