run_naive_rag.py 13.7 KB
Newer Older
chenzk's avatar
v1.0  
chenzk committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
# run_naive_rag.py
import os
import json
import time
from tqdm import tqdm
from typing import List, Dict, Optional, Tuple
import argparse

from bing_search import (
    bing_web_search,
    extract_relevant_info,
    fetch_page_content,
    extract_snippet_with_context,
)
from evaluate import run_evaluation, extract_answer
from transformers import AutoTokenizer
from vllm import LLM, SamplingParams

import re
import string
from nltk.tokenize import sent_tokenize
import torch
from prompts import (
    get_task_instruction_openqa, 
    get_task_instruction_math, 
    get_task_instruction_multi_choice, 
    get_task_instruction_code, 
    get_naive_rag_instruction, 
)

def parse_args():
    parser = argparse.ArgumentParser(description="Run Naive RAG for various datasets and models.")

    # Dataset and split configuration
    parser.add_argument(
        '--dataset_name',
        type=str,
        required=True,
        choices=['gpqa', 'math500', 'aime', 'amc', 'livecode', 'nq', 'triviaqa', 'hotpotqa', '2wiki', 'musique', 'bamboogle', 'medmcqa', 'pubhealth'],
        help="Name of the dataset to use."
    )

    parser.add_argument(
        '--split',
        type=str,
        required=True,
        choices=['test', 'diamond', 'main', 'extended'],
        help="Dataset split to use."
    )

    parser.add_argument(
        '--subset_num',
        type=int,
        default=None,
        help="Number of examples to process. Defaults to all if not specified."
    )

    # Search and document retrieval configuration
    parser.add_argument(
        '--top_k',
        type=int,
        default=10,
        help="Number of top search results to retrieve."
    )

    parser.add_argument(
        '--max_doc_len',
        type=int,
        default=3000,
        help="Maximum length of each searched document."
    )

    # Model configuration
    parser.add_argument(
        '--model_path',
        type=str,
        required=True,
        help="Path to the pre-trained model."
    )

    parser.add_argument(
        '--use_jina',
        type=bool,
        default=True,
        help="Whether to use Jina API for document fetching."
    )

    parser.add_argument(
        '--jina_api_key',
        type=str,
        default='None',
        help="Your Jina API Key to Fetch URL Content."
    )

    # Sampling parameters
    parser.add_argument(
        '--temperature',
        type=float,
        default=0.7,
        help="Sampling temperature."
    )

    parser.add_argument(
        '--top_p',
        type=float,
        default=0.8,
        help="Top-p sampling parameter."
    )

    parser.add_argument(
        '--top_k_sampling',
        type=int,
        default=20,
        help="Top-k sampling parameter."
    )

    parser.add_argument(
        '--repetition_penalty',
        type=float,
        default=None,
        help="Repetition penalty. If not set, defaults based on the model."
    )

    parser.add_argument(
        '--max_tokens',
        type=int,
        default=32768,
        help="Maximum number of tokens to generate. If not set, defaults based on the model and dataset."
    )

    # Bing API Configuration
    parser.add_argument(
        '--bing_subscription_key',
        type=str,
        required=True,
        help="Bing Search API subscription key."
    )

    parser.add_argument(
        '--bing_endpoint',
        type=str,
        default="https://api.bing.microsoft.com/v7.0/search",
        help="Bing Search API endpoint."
    )

    return parser.parse_args()

def main():
    args = parse_args()

    # Extract arguments
    dataset_name = args.dataset_name
    split = args.split
    subset_num = args.subset_num
    top_k = args.top_k
    max_doc_len = args.max_doc_len
    model_path = args.model_path
    temperature = args.temperature
    top_p = args.top_p
    top_k_sampling = args.top_k_sampling
    repetition_penalty = args.repetition_penalty
    max_tokens = args.max_tokens
    bing_subscription_key = args.bing_subscription_key
    bing_endpoint = args.bing_endpoint
    use_jina = args.use_jina
    jina_api_key = args.jina_api_key

    # Set default repetition_penalty if not provided
    if repetition_penalty is None:
        repetition_penalty = 1.05 if 'qwq' in model_path.lower() else 1.0
    
    if args.jina_api_key == 'None':
        jina_api_key = None

    # Paths to datasets
    if dataset_name == 'livecode':
        data_path = f'./data/LiveCodeBench/{split}.json'
    elif dataset_name in ['math500', 'gpqa', 'aime', 'amc']:
        data_path = f'./data/{dataset_name.upper()}/{split}.json'
    else:
        data_path = f'./data/QA_Datasets/{dataset_name}.json'

    # ---------------------- Caching Mechanism ----------------------
    # Define cache directories and file paths
    cache_dir = './cache'
    search_cache_path = os.path.join(cache_dir, 'search_cache.json')
    url_cache_path = os.path.join(cache_dir, 'url_cache.json')

    # Ensure cache directory exists
    os.makedirs(cache_dir, exist_ok=True)

    # Load existing caches or initialize empty dictionaries
    if os.path.exists(search_cache_path):
        with open(search_cache_path, 'r', encoding='utf-8') as f:
            search_cache = json.load(f)
    else:
        search_cache = {}

    if os.path.exists(url_cache_path):
        with open(url_cache_path, 'r', encoding='utf-8') as f:
            url_cache = json.load(f)
    else:
        url_cache = {}

    # Function to save caches
    def save_caches():
        with open(search_cache_path, 'w', encoding='utf-8') as f:
            json.dump(search_cache, f, ensure_ascii=False, indent=2)
        with open(url_cache_path, 'w', encoding='utf-8') as f:
            json.dump(url_cache, f, ensure_ascii=False, indent=2)

    # ---------------------- Model Loading ----------------------
    tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
    if tokenizer.pad_token is None:
        tokenizer.pad_token = tokenizer.eos_token
    tokenizer.padding_side = 'left'

    # Define output directory based on model and dataset
    if 'qwq' in model_path.lower():
        if dataset_name in ['math500', 'gpqa', 'aime', 'amc', 'livecode']:
            output_dir = f'./outputs/{dataset_name}.qwq.naive_rag'
        else:
            output_dir = f'./outputs/runs.qa/{dataset_name}.qwq.naive_rag'
    else:
        model_short_name = model_path.split('/')[-1].lower().replace('-instruct', '')
        output_dir = f'./outputs/runs.baselines/{dataset_name}.{model_short_name}.naive_rag'
    os.makedirs(output_dir, exist_ok=True)

    # ---------------------- Data Loading ----------------------
    with open(data_path, 'r', encoding='utf-8') as json_file:
        data = json.load(json_file)
        if subset_num is not None:
            data = data[:subset_num]

    # ---------------------- Search and Document Retrieval ----------------------
    print("Performing Bing Web Searches for all questions...")

    # Initialize a list to hold relevant information for each question
    all_relevant_info = []

    for item in tqdm(data, desc="Searching"):
        question = item['Question']
        # Check if the question has already been searched and cached
        if question in search_cache:
            results = search_cache[question]
            # print(f"Using cached search results for question: {question}")
        else:
            if dataset_name == 'livecode':
                search_question = question[:500]
            else:
                search_question = question
            results = bing_web_search(search_question, bing_subscription_key, bing_endpoint, market='en-US', language='en')
            search_cache[question] = results
            # print(f"Executed and cached search for question: {question}")

        # Extract relevant information from search results
        relevant_info = extract_relevant_info(results)[:top_k]
        all_relevant_info.append(relevant_info)

    # Save search cache after retrieval
    save_caches()
    print("Search cache saved.")

    # Collect all unique URLs to fetch
    unique_urls = set()
    url_snippets_map = {}

    for relevant_info in all_relevant_info:
        for info in relevant_info:
            url = info['url']
            snippet = info.get('snippet', "")
            unique_urls.add(url)
            url_snippets_map[url] = snippet

    # Determine which URLs need to be fetched
    urls_to_fetch = [url for url in unique_urls if url not in url_cache]

    print(f"Fetching {len(urls_to_fetch)} unique URLs...")
    fetched_contents = fetch_page_content(
        urls_to_fetch,
        use_jina=use_jina,
        jina_api_key=jina_api_key,
        # snippets=url_snippets_map
    )

    # Update URL cache with fetched contents
    for url, content in fetched_contents.items():
        url_cache[url] = content

    # Save URL cache after fetching
    save_caches()
    print("URL cache saved.")

    # ---------------------- Prompt Construction ----------------------
    print("Constructing prompts for generation...")
    input_prompts = []

    for idx, item in enumerate(tqdm(data, desc="Constructing Prompts")):
        question = item['Question']

        formatted_documents = ""
        relevant_info = all_relevant_info[idx]
        for i, doc_info in enumerate(relevant_info):
            url = doc_info['url']
            snippet = doc_info.get('snippet', "")
            raw_context = url_cache.get(url, "")
            success, context = extract_snippet_with_context(raw_context, snippet, context_chars=max_doc_len)
            if success:
                context = context
            else:
                context = raw_context[:2 * max_doc_len]

            # Clean snippet from HTML tags if any
            clean_snippet = re.sub('<[^<]+?>', '', snippet)  # Removes HTML tags

            formatted_documents += f"**Document {i + 1}:**\n"
            formatted_documents += f"**Title:** {doc_info.get('title', '')}\n"
            formatted_documents += f"**URL:** {url}\n"
            formatted_documents += f"**Snippet:** {clean_snippet}\n"
            formatted_documents += f"**Content:** {context}\n\n"

        # Construct the instruction with documents and question
        instruction = get_naive_rag_instruction(question, formatted_documents)

        # Construct dataset and model-specific prompts
        if dataset_name in ['nq', 'triviaqa', 'hotpotqa', 'musique', 'bamboogle', '2wiki']:
            if 'qwq' in model_path.lower():
                user_prompt = get_task_instruction_openqa(question, model_name='qwq')
            else:
                user_prompt = get_task_instruction_openqa(question)

        elif dataset_name in ['math500', 'aime', 'amc']:
            if 'qwq' in model_path.lower():
                user_prompt = get_task_instruction_math(question, model_name='qwq')
            else:
                user_prompt = get_task_instruction_math(question)

        elif dataset_name == 'gpqa':
            if 'qwq' in model_path.lower():
                user_prompt = get_task_instruction_multi_choice(question, model_name='qwq')
            elif 'llama' in model_path.lower():
                user_prompt = get_task_instruction_multi_choice(question, model_name='llama')
            else:
                user_prompt = get_task_instruction_multi_choice(question)

        elif dataset_name == 'livecode':
            question_title = item.get('question_title', '')
            if 'qwq' in model_path.lower():
                user_prompt = get_task_instruction_code(question, question_title=question_title, model_name='qwq')
            else:
                user_prompt = get_task_instruction_code(question)
        else:
            user_prompt = ""  # Default to empty if dataset not matched

        # Combine instruction and user prompt
        full_prompt = instruction + "\n\n" + user_prompt

        # Apply tokenizer and chat template
        prompt = [{"role": "user", "content": full_prompt}]
        prompt = tokenizer.apply_chat_template(prompt, tokenize=False, add_generation_prompt=True)
        input_prompts.append(prompt)

    # ---------------------- Generation ----------------------
    # Initialize the LLM
    llm = LLM(
        model=model_path,
        tensor_parallel_size=torch.cuda.device_count(),
        gpu_memory_utilization=0.95,
    )

    print("Generating answers with LLM...")

    # Set default max_tokens if not provided
    if max_tokens is None:
        if 'qwq' in model_path.lower():
            max_tokens = 20480
        else:
            max_tokens = 10240

    start_time = time.time()
    # Generate model outputs
    output_list = llm.generate(
        input_prompts, 
        sampling_params=SamplingParams(
            max_tokens=max_tokens, 
            temperature=temperature, 
            top_p=top_p, 
            top_k=top_k_sampling, 
            repetition_penalty=repetition_penalty,
        )
    )

    total_time = time.time() - start_time

    # ---------------------- Evaluation ----------------------
    print("Evaluating generated answers...")
    run_evaluation(
        filtered_data=data,
        input_list=input_prompts,
        output_list=output_list,
        dataset_name=dataset_name,
        output_dir=output_dir,
        total_time=total_time,
        split=split,
    )

    # ---------------------- Update Search and URL Cache ----------------------
    print('Updating Search and URL Cache...')
    # Load existing caches or initialize empty dictionaries
    if os.path.exists(search_cache_path):
        with open(search_cache_path, 'r', encoding='utf-8') as f:
            search_cache_new = json.load(f)
    else:
        search_cache_new = {}

    if os.path.exists(url_cache_path):
        with open(url_cache_path, 'r', encoding='utf-8') as f:
            url_cache_new = json.load(f)
    else:
        url_cache_new = {}

    search_cache.update(search_cache_new)
    url_cache.update(url_cache_new)

    save_caches()

    print("Process completed.")

if __name__ == "__main__":
    main()