sd3_infer.py 14.4 KB
Newer Older
mashun1's avatar
sd3.5  
mashun1 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
# NOTE: Must have folder `models` with the following files:
# - `clip_g.safetensors` (openclip bigG, same as SDXL)
# - `clip_l.safetensors` (OpenAI CLIP-L, same as SDXL)
# - `t5xxl.safetensors` (google T5-v1.1-XXL)
# - `sd3_medium.safetensors` (or whichever main MMDiT model file)
# Also can have
# - `sd3_vae.safetensors` (holds the VAE separately if needed)

import datetime
import math
import os

import fire
import numpy as np
import torch
from PIL import Image
from safetensors import safe_open
from tqdm import tqdm

import sd3_impls
from other_impls import SD3Tokenizer, SDClipModel, SDXLClipG, T5XXLModel
from sd3_impls import SDVAE, BaseModel, CFGDenoiser, SD3LatentFormat

#################################################################################################
### Wrappers for model parts
#################################################################################################


def load_into(f, model, prefix, device, dtype=None):
    """Just a debugging-friendly hack to apply the weights in a safetensors file to the pytorch module."""
    for key in f.keys():
        if key.startswith(prefix) and not key.startswith("loss."):
            path = key[len(prefix) :].split(".")
            obj = model
            for p in path:
                if obj is list:
                    obj = obj[int(p)]
                else:
                    obj = getattr(obj, p, None)
                    if obj is None:
                        print(
                            f"Skipping key '{key}' in safetensors file as '{p}' does not exist in python model"
                        )
                        break
            if obj is None:
                continue
            try:
                tensor = f.get_tensor(key).to(device=device)
                if dtype is not None:
                    tensor = tensor.to(dtype=dtype)
                obj.requires_grad_(False)
                obj.set_(tensor)
            except Exception as e:
                print(f"Failed to load key '{key}' in safetensors file: {e}")
                raise e


CLIPG_CONFIG = {
    "hidden_act": "gelu",
    "hidden_size": 1280,
    "intermediate_size": 5120,
    "num_attention_heads": 20,
    "num_hidden_layers": 32,
}


class ClipG:
    def __init__(self):
        with safe_open("models/clip_g.safetensors", framework="pt", device="cpu") as f:
            self.model = SDXLClipG(CLIPG_CONFIG, device="cpu", dtype=torch.float32)
            load_into(f, self.model.transformer, "", "cpu", torch.float32)


CLIPL_CONFIG = {
    "hidden_act": "quick_gelu",
    "hidden_size": 768,
    "intermediate_size": 3072,
    "num_attention_heads": 12,
    "num_hidden_layers": 12,
}


class ClipL:
    def __init__(self):
        with safe_open("models/clip_l.safetensors", framework="pt", device="cpu") as f:
            self.model = SDClipModel(
                layer="hidden",
                layer_idx=-2,
                device="cpu",
                dtype=torch.float32,
                layer_norm_hidden_state=False,
                return_projected_pooled=False,
                textmodel_json_config=CLIPL_CONFIG,
            )
            load_into(f, self.model.transformer, "", "cpu", torch.float32)


T5_CONFIG = {
    "d_ff": 10240,
    "d_model": 4096,
    "num_heads": 64,
    "num_layers": 24,
    "vocab_size": 32128,
}


class T5XXL:
    def __init__(self):
        with safe_open("models/t5xxl_fp16.safetensors", framework="pt", device="cpu") as f:
            self.model = T5XXLModel(T5_CONFIG, device="cpu", dtype=torch.float32)
            load_into(f, self.model.transformer, "", "cpu", torch.float32)


class SD3:
    def __init__(self, model, shift, verbose=False):
        with safe_open(model, framework="pt", device="cpu") as f:
            self.model = BaseModel(
                shift=shift,
                file=f,
                prefix="model.diffusion_model.",
                device="cpu",
                dtype=torch.float16,
                verbose=verbose,
            ).eval()
            load_into(f, self.model, "model.", "cpu", torch.float16)


class VAE:
    def __init__(self, model):
        with safe_open(model, framework="pt", device="cpu") as f:
            self.model = SDVAE(device="cpu", dtype=torch.float16).eval().cpu()
            prefix = ""
            if any(k.startswith("first_stage_model.") for k in f.keys()):
                prefix = "first_stage_model."
            load_into(f, self.model, prefix, "cpu", torch.float16)


#################################################################################################
### Main inference logic
#################################################################################################


# Note: Sigma shift value, publicly released models use 3.0
SHIFT = 3.0
# Naturally, adjust to the width/height of the model you have
WIDTH = 1024
HEIGHT = 1024
# Pick your prompt
PROMPT = "a photo of a cat"
# Most models prefer the range of 4-5, but still work well around 7
CFG_SCALE = 4.5
# Different models want different step counts but most will be good at 50, albeit that's slow to run
# sd3_medium is quite decent at 28 steps
STEPS = 40
# Seed
SEED = 23
# SEEDTYPE = "fixed"
SEEDTYPE = "rand"
# SEEDTYPE = "roll"
# Actual model file path
# MODEL = "models/sd3_medium.safetensors"
# MODEL = "models/sd3.5_large_turbo.safetensors"
MODEL = "models/sd3.5_large.safetensors"
# VAE model file path, or set None to use the same model file
VAEFile = None  # "models/sd3_vae.safetensors"
# Optional init image file path
INIT_IMAGE = None
# If init_image is given, this is the percentage of denoising steps to run (1.0 = full denoise, 0.0 = no denoise at all)
DENOISE = 0.6
# Output file path
OUTDIR = "outputs"
# SAMPLER
# SAMPLER = "euler"
SAMPLER = "dpmpp_2m"


class SD3Inferencer:
    def print(self, txt):
        if self.verbose:
            print(txt)

    def load(self, model=MODEL, vae=VAEFile, shift=SHIFT, verbose=False):
        self.verbose = verbose
        print("Loading tokenizers...")
        # NOTE: if you need a reference impl for a high performance CLIP tokenizer instead of just using the HF transformers one,
        # check https://github.com/Stability-AI/StableSwarmUI/blob/master/src/Utils/CliplikeTokenizer.cs
        # (T5 tokenizer is different though)
        self.tokenizer = SD3Tokenizer()
        print("Loading OpenAI CLIP L...")
        self.clip_l = ClipL()
        print("Loading OpenCLIP bigG...")
        self.clip_g = ClipG()
        print("Loading Google T5-v1-XXL...")
        self.t5xxl = T5XXL()
        print(f"Loading SD3 model {os.path.basename(model)}...")
        self.sd3 = SD3(model, shift, verbose)
        print("Loading VAE model...")
        self.vae = VAE(vae or model)
        print("Models loaded.")

    def get_empty_latent(self, width, height):
        self.print("Prep an empty latent...")
        return torch.ones(1, 16, height // 8, width // 8, device="cpu") * 0.0609

    def get_sigmas(self, sampling, steps):
        start = sampling.timestep(sampling.sigma_max)
        end = sampling.timestep(sampling.sigma_min)
        timesteps = torch.linspace(start, end, steps)
        sigs = []
        for x in range(len(timesteps)):
            ts = timesteps[x]
            sigs.append(sampling.sigma(ts))
        sigs += [0.0]
        return torch.FloatTensor(sigs)

    def get_noise(self, seed, latent):
        generator = torch.manual_seed(seed)
        self.print(
            f"dtype = {latent.dtype}, layout = {latent.layout}, device = {latent.device}"
        )
        return torch.randn(
            latent.size(),
            dtype=torch.float32,
            layout=latent.layout,
            generator=generator,
            device="cpu",
        ).to(latent.dtype)

    def get_cond(self, prompt):
        self.print("Encode prompt...")
        tokens = self.tokenizer.tokenize_with_weights(prompt)
        l_out, l_pooled = self.clip_l.model.encode_token_weights(tokens["l"])
        g_out, g_pooled = self.clip_g.model.encode_token_weights(tokens["g"])
        t5_out, t5_pooled = self.t5xxl.model.encode_token_weights(tokens["t5xxl"])
        lg_out = torch.cat([l_out, g_out], dim=-1)
        lg_out = torch.nn.functional.pad(lg_out, (0, 4096 - lg_out.shape[-1]))
        return torch.cat([lg_out, t5_out], dim=-2), torch.cat(
            (l_pooled, g_pooled), dim=-1
        )

    def max_denoise(self, sigmas):
        max_sigma = float(self.sd3.model.model_sampling.sigma_max)
        sigma = float(sigmas[0])
        return math.isclose(max_sigma, sigma, rel_tol=1e-05) or sigma > max_sigma

    def fix_cond(self, cond):
        cond, pooled = (cond[0].half().cuda(), cond[1].half().cuda())
        return {"c_crossattn": cond, "y": pooled}

    def do_sampling(
        self,
        latent,
        seed,
        conditioning,
        neg_cond,
        steps,
        cfg_scale,
        sampler="dpmpp_2m",
        denoise=1.0,
    ) -> torch.Tensor:
        self.print("Sampling...")
        latent = latent.half().cuda()
        self.sd3.model = self.sd3.model.cuda()
        noise = self.get_noise(seed, latent).cuda()
        sigmas = self.get_sigmas(self.sd3.model.model_sampling, steps).cuda()
        sigmas = sigmas[int(steps * (1 - denoise)) :]
        conditioning = self.fix_cond(conditioning)
        neg_cond = self.fix_cond(neg_cond)
        extra_args = {"cond": conditioning, "uncond": neg_cond, "cond_scale": cfg_scale}
        noise_scaled = self.sd3.model.model_sampling.noise_scaling(
            sigmas[0], noise, latent, self.max_denoise(sigmas)
        )
        sample_fn = getattr(sd3_impls, f"sample_{sampler}")
        latent = sample_fn(
            CFGDenoiser(self.sd3.model), noise_scaled, sigmas, extra_args=extra_args
        )
        latent = SD3LatentFormat().process_out(latent)
        self.sd3.model = self.sd3.model.cpu()
        self.print("Sampling done")
        return latent

    def vae_encode(self, image) -> torch.Tensor:
        self.print("Encoding image to latent...")
        image = image.convert("RGB")
        image_np = np.array(image).astype(np.float32) / 255.0
        image_np = np.moveaxis(image_np, 2, 0)
        batch_images = np.expand_dims(image_np, axis=0).repeat(1, axis=0)
        image_torch = torch.from_numpy(batch_images)
        image_torch = 2.0 * image_torch - 1.0
        image_torch = image_torch.cuda()
        self.vae.model = self.vae.model.cuda()
        latent = self.vae.model.encode(image_torch).cpu()
        self.vae.model = self.vae.model.cpu()
        self.print("Encoded")
        return latent

    def vae_decode(self, latent) -> Image.Image:
        self.print("Decoding latent to image...")
        latent = latent.cuda()
        self.vae.model = self.vae.model.cuda()
        image = self.vae.model.decode(latent)
        image = image.float()
        self.vae.model = self.vae.model.cpu()
        image = torch.clamp((image + 1.0) / 2.0, min=0.0, max=1.0)[0]
        decoded_np = 255.0 * np.moveaxis(image.cpu().numpy(), 0, 2)
        decoded_np = decoded_np.astype(np.uint8)
        out_image = Image.fromarray(decoded_np)
        self.print("Decoded")
        return out_image

    def gen_image(
        self,
        prompts=[PROMPT],
        width=WIDTH,
        height=HEIGHT,
        steps=STEPS,
        cfg_scale=CFG_SCALE,
        sampler=SAMPLER,
        seed=SEED,
        seed_type=SEEDTYPE,
        out_dir=OUTDIR,
        init_image=INIT_IMAGE,
        denoise=DENOISE,
    ):
        latent = self.get_empty_latent(width, height)
        if init_image:
            image_data = Image.open(init_image)
            image_data = image_data.resize((width, height), Image.LANCZOS)
            latent = self.vae_encode(image_data)
            latent = SD3LatentFormat().process_in(latent)
        neg_cond = self.get_cond("")
        seed_num = None
        pbar = tqdm(enumerate(prompts), total=len(prompts), position=0, leave=True)
        for i, prompt in pbar:
            if seed_type == "roll":
                seed_num = seed if seed_num is None else seed_num + 1
            elif seed_type == "rand":
                seed_num = torch.randint(0, 100000, (1,)).item()
            else:  # fixed
                seed_num = seed
            conditioning = self.get_cond(prompt)
            sampled_latent = self.do_sampling(
                latent,
                seed_num,
                conditioning,
                neg_cond,
                steps,
                cfg_scale,
                sampler,
                denoise if init_image else 1.0,
            )
            image = self.vae_decode(sampled_latent)
            save_path = os.path.join(out_dir, f"{i:06d}.png")
            self.print(f"Will save to {save_path}")
            image.save(save_path)
            self.print("Done")


CONFIGS = {
    "sd3_medium": {
        "shift": 1.0,
        "cfg": 5.0,
        "steps": 50,
        "sampler": "dpmpp_2m",
    },
    "sd3.5_large": {
        "shift": 3.0,
        "cfg": 4.5,
        "steps": 40,
        "sampler": "dpmpp_2m",
    },
    "sd3.5_large_turbo": {"shift": 3.0, "cfg": 1.0, "steps": 4, "sampler": "euler"},
}


@torch.no_grad()
def main(
    prompt=PROMPT,
    model=MODEL,
    out_dir=OUTDIR,
    postfix=None,
    seed=SEED,
    seed_type=SEEDTYPE,
    sampler=None,
    steps=None,
    cfg=None,
    shift=None,
    width=WIDTH,
    height=HEIGHT,
    vae=VAEFile,
    init_image=INIT_IMAGE,
    denoise=DENOISE,
    verbose=False,
):
    steps = steps or CONFIGS[os.path.splitext(os.path.basename(model))[0]]["steps"]
    cfg = cfg or CONFIGS[os.path.splitext(os.path.basename(model))[0]]["cfg"]
    shift = shift or CONFIGS[os.path.splitext(os.path.basename(model))[0]]["shift"]
    sampler = (
        sampler or CONFIGS[os.path.splitext(os.path.basename(model))[0]]["sampler"]
    )

    inferencer = SD3Inferencer()
    inferencer.load(model, vae, shift, verbose)

    if isinstance(prompt, str):
        if os.path.splitext(prompt)[-1] == ".txt":
            with open(prompt, "r") as f:
                prompts = [l.strip() for l in f.readlines()]
        else:
            prompts = [prompt]

    out_dir = os.path.join(
        out_dir,
        os.path.splitext(os.path.basename(model))[0],
        os.path.splitext(os.path.basename(prompt))[0][:50]
        + (postfix or datetime.datetime.now().strftime("_%Y-%m-%dT%H-%M-%S")),
    )
    print(f"Saving images to {out_dir}")
    os.makedirs(out_dir, exist_ok=False)

    inferencer.gen_image(
        prompts,
        width,
        height,
        steps,
        cfg,
        sampler,
        seed,
        seed_type,
        out_dir,
        init_image,
        denoise,
    )


fire.Fire(main)