tensor.py 8.07 KB
Newer Older
bailuo's avatar
init  
bailuo committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
import functools
import torch
import copy
from collections import OrderedDict


class TensorDict(OrderedDict):
    """Container mainly used for dicts of torch tensors. Extends OrderedDict with pytorch functionality."""

    def concat(self, other):
        """Concatenates two dicts without copying internal data."""
        return TensorDict(self, **other)

    def copy(self):
        return TensorDict(super(TensorDict, self).copy())

    def __deepcopy__(self, memodict={}):
        return TensorDict(copy.deepcopy(list(self), memodict))

    def __getattr__(self, name):
        if not hasattr(torch.Tensor, name):
            raise AttributeError('\'TensorDict\' object has not attribute \'{}\''.format(name))

        def apply_attr(*args, **kwargs):
            return TensorDict({n: getattr(e, name)(*args, **kwargs) if hasattr(e, name) else e for n, e in self.items()})
        return apply_attr

    def attribute(self, attr: str, *args):
        return TensorDict({n: getattr(e, attr, *args) for n, e in self.items()})

    def apply(self, fn, *args, **kwargs):
        return TensorDict({n: fn(e, *args, **kwargs) for n, e in self.items()})

    @staticmethod
    def _iterable(a):
        return isinstance(a, (TensorDict, list))


class TensorList(list):
    """Container mainly used for lists of torch tensors. Extends lists with pytorch functionality."""

    def __init__(self, list_of_tensors = None):
        if list_of_tensors is None:
            list_of_tensors = list()
        super(TensorList, self).__init__(list_of_tensors)

    def __deepcopy__(self, memodict={}):
        return TensorList(copy.deepcopy(list(self), memodict))

    def __getitem__(self, item):
        if isinstance(item, int):
            return super(TensorList, self).__getitem__(item)
        elif isinstance(item, (tuple, list)):
            return TensorList([super(TensorList, self).__getitem__(i) for i in item])
        else:
            return TensorList(super(TensorList, self).__getitem__(item))

    def __add__(self, other):
        if TensorList._iterable(other):
            return TensorList([e1 + e2 for e1, e2 in zip(self, other)])
        return TensorList([e + other for e in self])

    def __radd__(self, other):
        if TensorList._iterable(other):
            return TensorList([e2 + e1 for e1, e2 in zip(self, other)])
        return TensorList([other + e for e in self])

    def __iadd__(self, other):
        if TensorList._iterable(other):
            for i, e2 in enumerate(other):
                self[i] += e2
        else:
            for i in range(len(self)):
                self[i] += other
        return self

    def __sub__(self, other):
        if TensorList._iterable(other):
            return TensorList([e1 - e2 for e1, e2 in zip(self, other)])
        return TensorList([e - other for e in self])

    def __rsub__(self, other):
        if TensorList._iterable(other):
            return TensorList([e2 - e1 for e1, e2 in zip(self, other)])
        return TensorList([other - e for e in self])

    def __isub__(self, other):
        if TensorList._iterable(other):
            for i, e2 in enumerate(other):
                self[i] -= e2
        else:
            for i in range(len(self)):
                self[i] -= other
        return self

    def __mul__(self, other):
        if TensorList._iterable(other):
            return TensorList([e1 * e2 for e1, e2 in zip(self, other)])
        return TensorList([e * other for e in self])

    def __rmul__(self, other):
        if TensorList._iterable(other):
            return TensorList([e2 * e1 for e1, e2 in zip(self, other)])
        return TensorList([other * e for e in self])

    def __imul__(self, other):
        if TensorList._iterable(other):
            for i, e2 in enumerate(other):
                self[i] *= e2
        else:
            for i in range(len(self)):
                self[i] *= other
        return self

    def __truediv__(self, other):
        if TensorList._iterable(other):
            return TensorList([e1 / e2 for e1, e2 in zip(self, other)])
        return TensorList([e / other for e in self])

    def __rtruediv__(self, other):
        if TensorList._iterable(other):
            return TensorList([e2 / e1 for e1, e2 in zip(self, other)])
        return TensorList([other / e for e in self])

    def __itruediv__(self, other):
        if TensorList._iterable(other):
            for i, e2 in enumerate(other):
                self[i] /= e2
        else:
            for i in range(len(self)):
                self[i] /= other
        return self

    def __matmul__(self, other):
        if TensorList._iterable(other):
            return TensorList([e1 @ e2 for e1, e2 in zip(self, other)])
        return TensorList([e @ other for e in self])

    def __rmatmul__(self, other):
        if TensorList._iterable(other):
            return TensorList([e2 @ e1 for e1, e2 in zip(self, other)])
        return TensorList([other @ e for e in self])

    def __imatmul__(self, other):
        if TensorList._iterable(other):
            for i, e2 in enumerate(other):
                self[i] @= e2
        else:
            for i in range(len(self)):
                self[i] @= other
        return self

    def __mod__(self, other):
        if TensorList._iterable(other):
            return TensorList([e1 % e2 for e1, e2 in zip(self, other)])
        return TensorList([e % other for e in self])

    def __rmod__(self, other):
        if TensorList._iterable(other):
            return TensorList([e2 % e1 for e1, e2 in zip(self, other)])
        return TensorList([other % e for e in self])

    def __pos__(self):
        return TensorList([+e for e in self])

    def __neg__(self):
        return TensorList([-e for e in self])

    def __le__(self, other):
        if TensorList._iterable(other):
            return TensorList([e1 <= e2 for e1, e2 in zip(self, other)])
        return TensorList([e <= other for e in self])

    def __ge__(self, other):
        if TensorList._iterable(other):
            return TensorList([e1 >= e2 for e1, e2 in zip(self, other)])
        return TensorList([e >= other for e in self])

    def concat(self, other):
        return TensorList(super(TensorList, self).__add__(other))

    def copy(self):
        return TensorList(super(TensorList, self).copy())

    def unroll(self):
        if not any(isinstance(t, TensorList) for t in self):
            return self

        new_list = TensorList()
        for t in self:
            if isinstance(t, TensorList):
                new_list.extend(t.unroll())
            else:
                new_list.append(t)
        return new_list

    def list(self):
        return list(self)

    def attribute(self, attr: str, *args):
        return TensorList([getattr(e, attr, *args) for e in self])

    def apply(self, fn):
        return TensorList([fn(e) for e in self])

    def __getattr__(self, name):
        if not hasattr(torch.Tensor, name):
            raise AttributeError('\'TensorList\' object has not attribute \'{}\''.format(name))

        def apply_attr(*args, **kwargs):
            return TensorList([getattr(e, name)(*args, **kwargs) for e in self])

        return apply_attr

    @staticmethod
    def _iterable(a):
        return isinstance(a, (TensorList, list))


def tensor_operation(op):
    def islist(a):
        return isinstance(a, TensorList)

    @functools.wraps(op)
    def oplist(*args, **kwargs):
        if len(args) == 0:
            raise ValueError('Must be at least one argument without keyword (i.e. operand).')

        if len(args) == 1:
            if islist(args[0]):
                return TensorList([op(a, **kwargs) for a in args[0]])
        else:
            # Multiple operands, assume max two
            if islist(args[0]) and islist(args[1]):
                return TensorList([op(a, b, *args[2:], **kwargs) for a, b in zip(*args[:2])])
            if islist(args[0]):
                return TensorList([op(a, *args[1:], **kwargs) for a in args[0]])
            if islist(args[1]):
                return TensorList([op(args[0], b, *args[2:], **kwargs) for b in args[1]])

        # None of the operands are lists
        return op(*args, **kwargs)

    return oplist