ltr_seq_trainer.py 14.9 KB
Newer Older
bailuo's avatar
init  
bailuo committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
import os
import datetime
from collections import OrderedDict
from torch.nn.utils import clip_grad_norm_
# from lib.train.data.wandb_logger import WandbWriter
from lib.train.trainers import BaseTrainer
from lib.train.admin import AverageMeter, StatValue
from memory_profiler import profile
# from lib.train.admin import TensorboardWriter
import torch
import time
import numpy as np
from torch.utils.data.distributed import DistributedSampler
from torch.cuda.amp import autocast
from torch.cuda.amp import GradScaler

from lib.utils.misc import get_world_size


class LTRSeqTrainer(BaseTrainer):
    def __init__(self, actor, loaders, optimizer, settings, lr_scheduler=None, use_amp=False):
        """
        args:
            actor - The actor for training the network
            loaders - list of dataset loaders, e.g. [train_loader, val_loader]. In each epoch, the trainer runs one
                        epoch for each loader.
            optimizer - The optimizer used for training, e.g. Adam
            settings - Training settings
            lr_scheduler - Learning rate scheduler
        """
        super().__init__(actor, loaders, optimizer, settings, lr_scheduler)

        self._set_default_settings()

        # Initialize statistics variables
        self.stats = OrderedDict({loader.name: None for loader in self.loaders})

        # Initialize tensorboard and wandb
        # self.wandb_writer = None
        # if settings.local_rank in [-1, 0]:
        #    tensorboard_writer_dir = os.path.join(self.settings.env.tensorboard_dir, self.settings.project_path)
        #    if not os.path.exists(tensorboard_writer_dir):
        #        os.makedirs(tensorboard_writer_dir)
        #    self.tensorboard_writer = TensorboardWriter(tensorboard_writer_dir, [l.name for l in loaders])

        #    if settings.use_wandb:
        #        world_size = get_world_size()
        #        cur_train_samples = self.loaders[0].dataset.samples_per_epoch * max(0, self.epoch - 1)
        #        interval = (world_size * settings.batchsize)  # * interval
        #        self.wandb_writer = WandbWriter(settings.project_path[6:], {}, tensorboard_writer_dir, cur_train_samples, interval)

        self.move_data_to_gpu = getattr(settings, 'move_data_to_gpu', True)
        print("move_data", self.move_data_to_gpu)
        self.settings = settings
        self.use_amp = use_amp
        if use_amp:
            self.scaler = GradScaler()

    def _set_default_settings(self):
        # Dict of all default values
        default = {'print_interval': 10,
                   'print_stats': None,
                   'description': ''}

        for param, default_value in default.items():
            if getattr(self.settings, param, None) is None:
                setattr(self.settings, param, default_value)

        self.miou_list = []

    def cycle_dataset(self, loader):
        """Do a cycle of training or validation."""
        torch.autograd.set_detect_anomaly(True)
        self.actor.train(loader.training)
        torch.set_grad_enabled(loader.training)

        self._init_timing()

        for i, data in enumerate(loader, 1):
            self.actor.eval()
            self.data_read_done_time = time.time()
            with torch.no_grad():
                explore_result = self.actor.explore(data)
            if explore_result == None:
                print("this time i skip")
                # self._update_stats(stats, batch_size, loader)
                continue
            # get inputs
            # print(data)

            self.data_to_gpu_time = time.time()

            data['epoch'] = self.epoch
            data['settings'] = self.settings

            stats = {}
            reward_record = []
            miou_record = []
            e_miou_record = []
            num_seq = len(data['num_frames'])

            # Calculate reward tensor
            # reward_tensor = torch.zeros(explore_result['baseline_iou'].size())
            baseline_iou = explore_result['baseline_iou']
            # explore_iou = explore_result['explore_iou']
            for seq_idx in range(num_seq):
                num_frames = data['num_frames'][seq_idx] - 1
                b_miou = torch.mean(baseline_iou[:num_frames, seq_idx])
                #    e_miou = torch.mean(explore_iou[:num_frames, seq_idx])
                miou_record.append(b_miou.item())
                #    e_miou_record.append(e_miou.item())

                b_reward = b_miou.item()
            #    e_reward = e_miou.item()
            #    iou_gap = e_reward - b_reward
            #    reward_record.append(iou_gap)
            #    reward_tensor[:num_frames, seq_idx] = iou_gap

            # Training mode
            cursor = 0
            bs_backward = 1

            # print(self.actor.net.module.box_head.decoder.layers[2].mlpx.fc1.weight)
            self.optimizer.zero_grad()
            while cursor < num_seq:
                # print("now is ", cursor , "and all is ", num_seq)
                model_inputs = {}
                model_inputs['slt_loss_weight'] = 15
                if cursor < num_seq:
                    model_inputs['template_images'] = explore_result['template_images'][
                                                      cursor:cursor + bs_backward].cuda()
                else:
                    model_inputs['template_images'] = explore_result['template_images_reverse'][
                                                      cursor - num_seq:cursor - num_seq + bs_backward].cuda()
                model_inputs['search_images'] = explore_result['search_images'][:, cursor:cursor + bs_backward].cuda()
                model_inputs['search_anno'] = explore_result['search_anno'][:, cursor:cursor + bs_backward].cuda()
                model_inputs['pre_seq'] = explore_result['pre_seq'][:, cursor:cursor + bs_backward].cuda()
                model_inputs['x_feat'] = explore_result['x_feat'].squeeze(1)[:, cursor:cursor + bs_backward].cuda()
                model_inputs['epoch'] = data['epoch']
                # model_inputs['template_update'] = explore_result['template_update'].squeeze(1)[:,
                #                                  cursor:cursor + bs_backward].cuda()
                # print("this is cursor")
                # print(explore_result['pre_seq'].shape)
                # print(explore_result['x_feat'].squeeze(1).shape)
                # model_inputs['action_tensor'] = explore_result['action_tensor'][:, cursor:cursor + bs_backward].cuda()
                # model_inputs['reward_tensor'] = reward_tensor[:, cursor:cursor + bs_backward].cuda()

                loss, stats_cur = self.actor.compute_sequence_losses(model_inputs)
                # for name, param in self.actor.net.named_parameters():
                #    shape, c = (param.grad.shape, param.grad.sum()) if param.grad is not None else (None, None)
                #    print(f'{name}: {param.shape} \n\t grad: {shape} \n\t {c}')
                # print("i make this!")
                loss.backward()
                # print("i made that?")

                for key, val in stats_cur.items():
                    if key in stats:
                        stats[key] += val * (bs_backward / num_seq)
                    else:
                        stats[key] = val * (bs_backward / num_seq)
                cursor += bs_backward
            grad_norm = clip_grad_norm_(self.actor.net.parameters(), 100)
            stats['grad_norm'] = grad_norm
            # print(self.actor.net.module.backbone.blocks[8].mlp.fc1.weight)
            self.optimizer.step()
            # print(self.optimizer)

            miou = np.mean(miou_record)
            self.miou_list.append(miou)
            # stats['reward'] = np.mean(reward_record)
            # stats['e_mIoU'] = np.mean(e_miou_record)
            stats['mIoU'] = miou
            stats['mIoU10'] = np.mean(self.miou_list[-10:])
            stats['mIoU100'] = np.mean(self.miou_list[-100:])

            batch_size = num_seq * np.max(data['num_frames'])
            self._update_stats(stats, batch_size, loader)
            self._print_stats(i, loader, batch_size)
            torch.cuda.empty_cache()

            # # forward pass
            # if not self.use_amp:
            #     loss, stats = self.actor(data)
            # else:
            #     with autocast():
            #         loss, stats = self.actor(data)
            #
            # # backward pass and update weights
            # if loader.training:
            #     self.optimizer.zero_grad()
            #     if not self.use_amp:
            #         loss.backward()
            #         if self.settings.grad_clip_norm > 0:
            #             torch.nn.utils.clip_grad_norm_(self.actor.net.parameters(), self.settings.grad_clip_norm)
            #         self.optimizer.step()
            #     else:
            #         self.scaler.scale(loss).backward()
            #         self.scaler.step(self.optimizer)
            #         self.scaler.update()

            # update statistics
            # batch_size = data['template_images'].shape[loader.stack_dim]
            # self._update_stats(stats, batch_size, loader)

            # print statistics
            # self._print_stats(i, loader, batch_size)

            # update wandb status
            # if self.wandb_writer is not None and i % self.settings.print_interval == 0:
            #    if self.settings.local_rank in [-1, 0]:
            #        self.wandb_writer.write_log(self.stats, self.epoch)

        # calculate ETA after every epoch
        # epoch_time = self.prev_time - self.start_time
        # print("Epoch Time: " + str(datetime.timedelta(seconds=epoch_time)))
        # print("Avg Data Time: %.5f" % (self.avg_date_time / self.num_frames * batch_size))
        # print("Avg GPU Trans Time: %.5f" % (self.avg_gpu_trans_time / self.num_frames * batch_size))
        # print("Avg Forward Time: %.5f" % (self.avg_forward_time / self.num_frames * batch_size))

    def train_epoch(self):
        """Do one epoch for each loader."""
        for loader in self.loaders:
            if self.epoch % loader.epoch_interval == 0:
                # 2021.1.10 Set epoch
                if isinstance(loader.sampler, DistributedSampler):
                    loader.sampler.set_epoch(self.epoch)
                self.cycle_dataset(loader)

        self._stats_new_epoch()
        # if self.settings.local_rank in [-1, 0]:
        #    self._write_tensorboard()

    def _init_timing(self):
        self.num_frames = 0
        self.start_time = time.time()
        self.prev_time = self.start_time
        self.avg_date_time = 0
        self.avg_gpu_trans_time = 0
        self.avg_forward_time = 0

    def _update_stats(self, new_stats: OrderedDict, batch_size, loader):
        # Initialize stats if not initialized yet
        if loader.name not in self.stats.keys() or self.stats[loader.name] is None:
            self.stats[loader.name] = OrderedDict({name: AverageMeter() for name in new_stats.keys()})

        # add lr state
        if loader.training:
            lr_list = self.lr_scheduler.get_last_lr()
            for i, lr in enumerate(lr_list):
                var_name = 'LearningRate/group{}'.format(i)
                if var_name not in self.stats[loader.name].keys():
                    self.stats[loader.name][var_name] = StatValue()
                self.stats[loader.name][var_name].update(lr)

        for name, val in new_stats.items():
            if name not in self.stats[loader.name].keys():
                self.stats[loader.name][name] = AverageMeter()
            self.stats[loader.name][name].update(val, batch_size)

    def _print_stats(self, i, loader, batch_size):
        self.num_frames += batch_size
        current_time = time.time()
        batch_fps = batch_size / (current_time - self.prev_time)
        average_fps = self.num_frames / (current_time - self.start_time)
        prev_frame_time_backup = self.prev_time
        self.prev_time = current_time

        self.avg_date_time += (self.data_read_done_time - prev_frame_time_backup)
        self.avg_gpu_trans_time += (self.data_to_gpu_time - self.data_read_done_time)
        self.avg_forward_time += current_time - self.data_to_gpu_time

        if i % self.settings.print_interval == 0 or i == loader.__len__():
            print_str = '[%s: %d, %d / %d] ' % (loader.name, self.epoch, i, loader.__len__())
            print_str += 'FPS: %.1f (%.1f)  ,  ' % (average_fps, batch_fps)

            # 2021.12.14 add data time print
            print_str += 'DataTime: %.3f (%.3f)  ,  ' % (
            self.avg_date_time / self.num_frames * batch_size, self.avg_gpu_trans_time / self.num_frames * batch_size)
            print_str += 'ForwardTime: %.3f  ,  ' % (self.avg_forward_time / self.num_frames * batch_size)
            print_str += 'TotalTime: %.3f  ,  ' % ((current_time - self.start_time) / self.num_frames * batch_size)
            # print_str += 'DataTime: %.3f (%.3f)  ,  ' % (self.data_read_done_time - prev_frame_time_backup, self.data_to_gpu_time - self.data_read_done_time)
            # print_str += 'ForwardTime: %.3f  ,  ' % (current_time - self.data_to_gpu_time)
            # print_str += 'TotalTime: %.3f  ,  ' % (current_time - prev_frame_time_backup)

            for name, val in self.stats[loader.name].items():
                if (self.settings.print_stats is None or name in self.settings.print_stats):
                    if hasattr(val, 'avg'):
                        print_str += '%s: %.5f  ,  ' % (name, val.avg)
                    # else:
                    #     print_str += '%s: %r  ,  ' % (name, val)

            print(print_str[:-5])
            log_str = print_str[:-5] + '\n'
            with open(self.settings.log_file, 'a') as f:
                f.write(log_str)

    def _stats_new_epoch(self):
        # Record learning rate
        for loader in self.loaders:
            if loader.training:
                try:
                    lr_list = self.lr_scheduler.get_last_lr()
                except:
                    lr_list = self.lr_scheduler._get_lr(self.epoch)
                for i, lr in enumerate(lr_list):
                    var_name = 'LearningRate/group{}'.format(i)
                    if var_name not in self.stats[loader.name].keys():
                        self.stats[loader.name][var_name] = StatValue()
                    self.stats[loader.name][var_name].update(lr)

        for loader_stats in self.stats.values():
            if loader_stats is None:
                continue
            for stat_value in loader_stats.values():
                if hasattr(stat_value, 'new_epoch'):
                    stat_value.new_epoch()

    # def _write_tensorboard(self):
    #    if self.epoch == 1:
    #        self.tensorboard_writer.write_info(self.settings.script_name, self.settings.description)

    #    self.tensorboard_writer.write_epoch(self.stats, self.epoch)