base_trainer.py 11.5 KB
Newer Older
bailuo's avatar
init  
bailuo committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
import os
import glob
import torch
import traceback
from lib.train.admin import multigpu
from torch.utils.data.distributed import DistributedSampler


class BaseTrainer:
    """Base trainer class. Contains functions for training and saving/loading checkpoints.
    Trainer classes should inherit from this one and overload the train_epoch function."""

    def __init__(self, actor, loaders, optimizer, settings, lr_scheduler=None):
        """
        args:
            actor - The actor for training the network
            loaders - list of dataset loaders, e.g. [train_loader, val_loader]. In each epoch, the trainer runs one
                        epoch for each loader.
            optimizer - The optimizer used for training, e.g. Adam
            settings - Training settings
            lr_scheduler - Learning rate scheduler
        """
        self.actor = actor
        self.optimizer = optimizer
        self.lr_scheduler = lr_scheduler
        self.loaders = loaders

        self.update_settings(settings)

        self.epoch = 0
        self.stats = {}

        self.device = getattr(settings, 'device', None)
        if self.device is None:
            self.device = torch.device("cuda:0" if torch.cuda.is_available() and settings.use_gpu else "cpu")

        self.actor.to(self.device)
        self.settings = settings

    def update_settings(self, settings=None):
        """Updates the trainer settings. Must be called to update internal settings."""
        if settings is not None:
            self.settings = settings

        if self.settings.env.workspace_dir is not None:
            self.settings.env.workspace_dir = os.path.expanduser(self.settings.env.workspace_dir)
            '''2021.1.4 New function: specify checkpoint dir'''
            if self.settings.save_dir is None:
                self._checkpoint_dir = os.path.join(self.settings.env.workspace_dir, 'checkpoints')
            else:
                self._checkpoint_dir = os.path.join(self.settings.save_dir, 'checkpoints')
            print("checkpoints will be saved to %s" % self._checkpoint_dir)

            if self.settings.local_rank in [-1, 0]:
                if not os.path.exists(self._checkpoint_dir):
                    print("Training with multiple GPUs. checkpoints directory doesn't exist. "
                          "Create checkpoints directory")
                    os.makedirs(self._checkpoint_dir)
        else:
            self._checkpoint_dir = None

    def train(self, max_epochs, load_latest=False, fail_safe=True, load_previous_ckpt=False, distill=False):
        """Do training for the given number of epochs.
        args:
            max_epochs - Max number of training epochs,
            load_latest - Bool indicating whether to resume from latest epoch.
            fail_safe - Bool indicating whether the training to automatically restart in case of any crashes.
        """

        epoch = -1
        num_tries = 1
        for i in range(num_tries):
            try:
                if load_latest:
                    self.load_checkpoint()
                if load_previous_ckpt:
                    directory = '{}/{}'.format(self._checkpoint_dir, self.settings.project_path_prv)
                    self.load_state_dict(directory)
                if distill:
                    directory_teacher = '{}/{}'.format(self._checkpoint_dir, self.settings.project_path_teacher)
                    self.load_state_dict(directory_teacher, distill=True)
                for epoch in range(self.epoch+1, max_epochs+1):
                    self.epoch = epoch

                    self.train_epoch()

                    if self.lr_scheduler is not None:
                        if self.settings.scheduler_type != 'cosine':
                            self.lr_scheduler.step()
                        else:
                            self.lr_scheduler.step(epoch - 1)
                    # only save the last 10 checkpoints
                    save_every_epoch = getattr(self.settings, "save_every_epoch", False)
                    save_epochs = []
                    if epoch > (max_epochs - 1) or save_every_epoch or epoch % 5 == 0 or epoch in save_epochs or epoch > (max_epochs - 5):
                    # if epoch > (max_epochs - 10) or save_every_epoch or epoch % 100 == 0:
                        if self._checkpoint_dir:
                            if self.settings.local_rank in [-1, 0]:
                                self.save_checkpoint()
            except:
                print('Training crashed at epoch {}'.format(epoch))
                if fail_safe:
                    self.epoch -= 1
                    load_latest = True
                    print('Traceback for the error!')
                    print(traceback.format_exc())
                    print('Restarting training from last epoch ...')
                else:
                    raise

        print('Finished training!')

    def train_epoch(self):
        raise NotImplementedError

    def save_checkpoint(self):
        """Saves a checkpoint of the network and other variables."""

        net = self.actor.net.module if multigpu.is_multi_gpu(self.actor.net) else self.actor.net

        actor_type = type(self.actor).__name__
        net_type = type(net).__name__
        state = {
            'epoch': self.epoch,
            'actor_type': actor_type,
            'net_type': net_type,
            'net': net.state_dict(),
            'net_info': getattr(net, 'info', None),
            'constructor': getattr(net, 'constructor', None),
            'optimizer': self.optimizer.state_dict(),
            'stats': self.stats,
            'settings': self.settings
        }

        directory = '{}/{}'.format(self._checkpoint_dir, self.settings.project_path)
        print(directory)
        if not os.path.exists(directory):
            print("directory doesn't exist. creating...")
            os.makedirs(directory)

        # First save as a tmp file
        tmp_file_path = '{}/{}_ep{:04d}.tmp'.format(directory, net_type, self.epoch)
        torch.save(state, tmp_file_path)

        file_path = '{}/{}_ep{:04d}.pth.tar'.format(directory, net_type, self.epoch)

        # Now rename to actual checkpoint. os.rename seems to be atomic if files are on same filesystem. Not 100% sure
        os.rename(tmp_file_path, file_path)

    def load_checkpoint(self, checkpoint = None, fields = None, ignore_fields = None, load_constructor = False):
        """Loads a network checkpoint file.

        Can be called in three different ways:
            load_checkpoint():
                Loads the latest epoch from the workspace. Use this to continue training.
            load_checkpoint(epoch_num):
                Loads the network at the given epoch number (int).
            load_checkpoint(path_to_checkpoint):
                Loads the file from the given absolute path (str).
        """

        net = self.actor.net.module if multigpu.is_multi_gpu(self.actor.net) else self.actor.net

        actor_type = type(self.actor).__name__
        net_type = type(net).__name__

        if checkpoint is None:
            # Load most recent checkpoint
            checkpoint_list = sorted(glob.glob('{}/{}/{}_ep*.pth.tar'.format(self._checkpoint_dir,
                                                                             self.settings.project_path, net_type)))
            if checkpoint_list:
                checkpoint_path = checkpoint_list[-1]
            else:
                print('No matching checkpoint file found')
                return
        elif isinstance(checkpoint, int):
            # Checkpoint is the epoch number
            checkpoint_path = '{}/{}/{}_ep{:04d}.pth.tar'.format(self._checkpoint_dir, self.settings.project_path,
                                                                 net_type, checkpoint)
        elif isinstance(checkpoint, str):
            # checkpoint is the path
            if os.path.isdir(checkpoint):
                checkpoint_list = sorted(glob.glob('{}/*_ep*.pth.tar'.format(checkpoint)))
                if checkpoint_list:
                    checkpoint_path = checkpoint_list[-1]
                else:
                    raise Exception('No checkpoint found')
            else:
                checkpoint_path = os.path.expanduser(checkpoint)
        else:
            raise TypeError

        # Load network
        checkpoint_dict = torch.load(checkpoint_path, map_location='cpu')

        assert net_type == checkpoint_dict['net_type'], 'Network is not of correct type.'

        if fields is None:
            fields = checkpoint_dict.keys()
        if ignore_fields is None:
            ignore_fields = ['settings']

            # Never load the scheduler. It exists in older checkpoints.
        ignore_fields.extend(['lr_scheduler', 'constructor', 'net_type', 'actor_type', 'net_info'])

        # Load all fields
        for key in fields:
            if key in ignore_fields:
                continue
            if key == 'net':
                net.load_state_dict(checkpoint_dict[key])
            elif key == 'optimizer':
                self.optimizer.load_state_dict(checkpoint_dict[key])
            else:
                setattr(self, key, checkpoint_dict[key])

        # Set the net info
        if load_constructor and 'constructor' in checkpoint_dict and checkpoint_dict['constructor'] is not None:
            net.constructor = checkpoint_dict['constructor']
        if 'net_info' in checkpoint_dict and checkpoint_dict['net_info'] is not None:
            net.info = checkpoint_dict['net_info']

        # Update the epoch in lr scheduler
        if 'epoch' in fields:
            self.lr_scheduler.last_epoch = self.epoch
        # 2021.1.10 Update the epoch in data_samplers
            for loader in self.loaders:
                if isinstance(loader.sampler, DistributedSampler):
                    loader.sampler.set_epoch(self.epoch)
        return True

    def load_state_dict(self, checkpoint=None, distill=False):
        """Loads a network checkpoint file.

        Can be called in three different ways:
            load_checkpoint():
                Loads the latest epoch from the workspace. Use this to continue training.
            load_checkpoint(epoch_num):
                Loads the network at the given epoch number (int).
            load_checkpoint(path_to_checkpoint):
                Loads the file from the given absolute path (str).
        """
        if distill:
            net = self.actor.net_teacher.module if multigpu.is_multi_gpu(self.actor.net_teacher) \
                else self.actor.net_teacher
        else:
            net = self.actor.net.module if multigpu.is_multi_gpu(self.actor.net) else self.actor.net

        net_type = type(net).__name__

        if isinstance(checkpoint, str):
            # checkpoint is the path
            if os.path.isdir(checkpoint):
                checkpoint_list = sorted(glob.glob('{}/*_ep*.pth.tar'.format(checkpoint)))
                if checkpoint_list:
                    checkpoint_path = checkpoint_list[-1]
                else:
                    raise Exception('No checkpoint found')
            else:
                checkpoint_path = os.path.expanduser(checkpoint)
        else:
            raise TypeError

        # Load network
        print("Loading pretrained model from ", checkpoint_path)
        checkpoint_dict = torch.load(checkpoint_path, map_location='cpu')

        assert net_type == checkpoint_dict['net_type'], 'Network is not of correct type.'

        missing_k, unexpected_k = net.load_state_dict(checkpoint_dict["net"], strict=False)
        print("previous checkpoint is loaded.")
        print("missing keys: ", missing_k)
        print("unexpected keys:", unexpected_k)

        return True