train_script.py 9.56 KB
Newer Older
bailuo's avatar
init  
bailuo committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import os
# loss function related
from lib.utils.box_ops import giou_loss
from torch.nn.functional import l1_loss
from torch.nn import BCEWithLogitsLoss
# train pipeline related
from lib.train.trainers import LTRTrainer, LTRSeqTrainer
from lib.train.dataset import Lasot, Got10k, MSCOCOSeq, ImagenetVID, TrackingNet
from lib.train.dataset import Lasot_lmdb, Got10k_lmdb, MSCOCOSeq_lmdb, ImagenetVID_lmdb, TrackingNet_lmdb
from lib.train.data import sampler, opencv_loader, processing, LTRLoader, sequence_sampler
# distributed training related
from torch.nn.parallel import DistributedDataParallel as DDP
# some more advanced functions
from .base_functions import *
# network related
from lib.models.artrack import build_artrack
from lib.models.artrack_seq import build_artrack_seq
# forward propagation related
from lib.train.actors import ARTrackActor, ARTrackSeqActor
# for import modules
import importlib

from ..utils.focal_loss import FocalLoss

def names2datasets(name_list: list, settings, image_loader):
    assert isinstance(name_list, list)
    datasets = []
    #settings.use_lmdb = True
    for name in name_list:
        assert name in ["LASOT", "GOT10K_vottrain", "GOT10K_votval", "GOT10K_train_full", "GOT10K_official_val",
                        "COCO17", "VID", "TRACKINGNET"]
        if name == "LASOT":
            if settings.use_lmdb:
                print("Building lasot dataset from lmdb")
                datasets.append(Lasot_lmdb(settings.env.lasot_lmdb_dir, split='train', image_loader=image_loader))
            else:
                datasets.append(Lasot(settings.env.lasot_dir, split='train', image_loader=image_loader))
        if name == "GOT10K_vottrain":
            if settings.use_lmdb:
                print("Building got10k from lmdb")
                datasets.append(Got10k_lmdb(settings.env.got10k_lmdb_dir, split='vottrain', image_loader=image_loader))
            else:
                datasets.append(Got10k(settings.env.got10k_dir, split='vottrain', image_loader=image_loader))
        if name == "GOT10K_train_full":
            if settings.use_lmdb:
                print("Building got10k_train_full from lmdb")
                datasets.append(Got10k_lmdb(settings.env.got10k_lmdb_dir, split='train_full', image_loader=image_loader))
            else:
                datasets.append(Got10k(settings.env.got10k_dir, split='train_full', image_loader=image_loader))
        if name == "GOT10K_votval":
            if settings.use_lmdb:
                print("Building got10k from lmdb")
                datasets.append(Got10k_lmdb(settings.env.got10k_lmdb_dir, split='votval', image_loader=image_loader))
            else:
                datasets.append(Got10k(settings.env.got10k_dir, split='votval', image_loader=image_loader))
        if name == "GOT10K_official_val":
            if settings.use_lmdb:
                raise ValueError("Not implement")
            else:
                datasets.append(Got10k(settings.env.got10k_val_dir, split=None, image_loader=image_loader))
        if name == "COCO17":
            if settings.use_lmdb:
                print("Building COCO2017 from lmdb")
                datasets.append(MSCOCOSeq_lmdb(settings.env.coco_lmdb_dir, version="2017", image_loader=image_loader))
            else:
                datasets.append(MSCOCOSeq(settings.env.coco_dir, version="2017", image_loader=image_loader))
        if name == "VID":
            if settings.use_lmdb:
                print("Building VID from lmdb")
                datasets.append(ImagenetVID_lmdb(settings.env.imagenet_lmdb_dir, image_loader=image_loader))
            else:
                datasets.append(ImagenetVID(settings.env.imagenet_dir, image_loader=image_loader))
        if name == "TRACKINGNET":
            if settings.use_lmdb:
                print("Building TrackingNet from lmdb")
                datasets.append(TrackingNet_lmdb(settings.env.trackingnet_lmdb_dir, image_loader=image_loader))
            else:
                # raise ValueError("NOW WE CAN ONLY USE TRACKINGNET FROM LMDB")
                datasets.append(TrackingNet(settings.env.trackingnet_dir, image_loader=image_loader))
    return datasets

def slt_collate(batch):
    ret = {}
    for k in batch[0].keys():
        here_list = []
        for ex in batch:
            here_list.append(ex[k])
        ret[k] = here_list
    return ret

class SLTLoader(torch.utils.data.dataloader.DataLoader):
    """
    Data loader. Combines a dataset and a sampler, and provides
    single- or multi-process iterators over the dataset.
    """

    __initialized = False

    def __init__(self, name, dataset, training=True, batch_size=1, shuffle=False, sampler=None, batch_sampler=None,
                 num_workers=0, epoch_interval=1, collate_fn=None, stack_dim=0, pin_memory=False, drop_last=False,
                 timeout=0, worker_init_fn=None):

        if collate_fn is None:
            collate_fn = slt_collate

        super(SLTLoader, self).__init__(dataset, batch_size, shuffle, sampler, batch_sampler,
                 num_workers, collate_fn, pin_memory, drop_last,
                 timeout, worker_init_fn)

        self.name = name
        self.training = training
        self.epoch_interval = epoch_interval
        self.stack_dim = stack_dim

def run(settings):
    settings.description = 'Training script for STARK-S, STARK-ST stage1, and STARK-ST stage2'

    # update the default configs with config file
    if not os.path.exists(settings.cfg_file):
        raise ValueError("%s doesn't exist." % settings.cfg_file)
    config_module = importlib.import_module("lib.config.%s.config" % settings.script_name)
    cfg = config_module.cfg
    config_module.update_config_from_file(settings.cfg_file)
    if settings.local_rank in [-1, 0]:
        print("New configuration is shown below.")
        for key in cfg.keys():
            print("%s configuration:" % key, cfg[key])
            print('\n')

    # update settings based on cfg
    update_settings(settings, cfg)

    # Record the training log
    log_dir = os.path.join(settings.save_dir, 'logs')
    if settings.local_rank in [-1, 0]:
        if not os.path.exists(log_dir):
            os.makedirs(log_dir)
    settings.log_file = os.path.join(log_dir, "%s-%s.log" % (settings.script_name, settings.config_name))

    # Build dataloaders

    if "RepVGG" in cfg.MODEL.BACKBONE.TYPE or "swin" in cfg.MODEL.BACKBONE.TYPE or "LightTrack" in cfg.MODEL.BACKBONE.TYPE:
        cfg.ckpt_dir = settings.save_dir
    bins = cfg.MODEL.BINS
    search_size = cfg.DATA.SEARCH.SIZE
    # Create network
    if settings.script_name == "artrack":
        net = build_artrack(cfg)
        loader_train, loader_val = build_dataloaders(cfg, settings)
    elif settings.script_name == "artrack_seq":
        net = build_artrack_seq(cfg)
        dataset_train = sequence_sampler.SequenceSampler(
            datasets=names2datasets(cfg.DATA.TRAIN.DATASETS_NAME, settings, opencv_loader),
            p_datasets=cfg.DATA.TRAIN.DATASETS_RATIO,
            samples_per_epoch=cfg.DATA.TRAIN.SAMPLE_PER_EPOCH,
            max_gap=cfg.DATA.MAX_GAP, max_interval=cfg.DATA.MAX_INTERVAL,
            num_search_frames=cfg.DATA.SEARCH.NUMBER, num_template_frames=1,
            frame_sample_mode='random_interval',
            prob=cfg.DATA.INTERVAL_PROB)
        loader_train = SLTLoader('train', dataset_train, training=True, batch_size=cfg.TRAIN.BATCH_SIZE,
                                 num_workers=cfg.TRAIN.NUM_WORKER,
                                 shuffle=False, drop_last=True)
    else:
        raise ValueError("illegal script name")

    # wrap networks to distributed one
    net.cuda()
    if settings.local_rank != -1:
        # net = torch.nn.SyncBatchNorm.convert_sync_batchnorm(net)  # add syncBN converter
        net = DDP(net, device_ids=[settings.local_rank], find_unused_parameters=True)
        settings.device = torch.device("cuda:%d" % settings.local_rank)
    else:
        settings.device = torch.device("cuda:0")
    settings.deep_sup = getattr(cfg.TRAIN, "DEEP_SUPERVISION", False)
    settings.distill = getattr(cfg.TRAIN, "DISTILL", False)
    settings.distill_loss_type = getattr(cfg.TRAIN, "DISTILL_LOSS_TYPE", "KL")
    # Loss functions and Actors
    if settings.script_name == "artrack":
        focal_loss = FocalLoss()
        objective = {'giou': giou_loss, 'l1': l1_loss, 'focal': focal_loss}
        loss_weight = {'giou': cfg.TRAIN.GIOU_WEIGHT, 'l1': cfg.TRAIN.L1_WEIGHT, 'focal': 2.}
        actor = ARTrackActor(net=net, objective=objective, loss_weight=loss_weight, settings=settings, cfg=cfg, bins=bins, search_size=search_size)
    elif settings.script_name == "artrack_seq":
        focal_loss = FocalLoss()
        objective = {'giou': giou_loss, 'l1': l1_loss, 'focal': focal_loss}
        loss_weight = {'giou': cfg.TRAIN.GIOU_WEIGHT, 'l1': cfg.TRAIN.L1_WEIGHT, 'focal': 2.}
        actor = ARTrackSeqActor(net=net, objective=objective, loss_weight=loss_weight, settings=settings, cfg=cfg, bins=bins, search_size=search_size)
    else:
        raise ValueError("illegal script name")

    # if cfg.TRAIN.DEEP_SUPERVISION:
    #     raise ValueError("Deep supervision is not supported now.")

    # Optimizer, parameters, and learning rates
    optimizer, lr_scheduler = get_optimizer_scheduler(net, cfg)
    use_amp = getattr(cfg.TRAIN, "AMP", False)
    if settings.script_name == "artrack":
        trainer = LTRTrainer(actor, [loader_train, loader_val], optimizer, settings, lr_scheduler, use_amp=use_amp)
    elif settings.script_name == "artrack_seq":
        trainer = LTRSeqTrainer(actor, [loader_train], optimizer, settings, lr_scheduler, use_amp=use_amp)

    # train process
    trainer.train(cfg.TRAIN.EPOCH, load_latest=True, fail_safe=True)