got10k.py 7.8 KB
Newer Older
bailuo's avatar
init  
bailuo committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import os
import os.path
import numpy as np
import torch
import csv
import pandas
import random
from collections import OrderedDict
from .base_video_dataset import BaseVideoDataset
from lib.train.data import jpeg4py_loader
from lib.train.admin import env_settings


class Got10k(BaseVideoDataset):
    """ GOT-10k dataset.

    Publication:
        GOT-10k: A Large High-Diversity Benchmark for Generic Object Tracking in the Wild
        Lianghua Huang, Xin Zhao, and Kaiqi Huang
        arXiv:1810.11981, 2018
        https://arxiv.org/pdf/1810.11981.pdf

    Download dataset from http://got-10k.aitestunion.com/downloads
    """

    def __init__(self, root=None, image_loader=jpeg4py_loader, split=None, seq_ids=None, data_fraction=None):
        """
        args:
            root - path to the got-10k training data. Note: This should point to the 'train' folder inside GOT-10k
            image_loader (jpeg4py_loader) -  The function to read the images. jpeg4py (https://github.com/ajkxyz/jpeg4py)
                                            is used by default.
            split - 'train' or 'val'. Note: The validation split here is a subset of the official got-10k train split,
                    not NOT the official got-10k validation split. To use the official validation split, provide that as
                    the root folder instead.
            seq_ids - List containing the ids of the videos to be used for training. Note: Only one of 'split' or 'seq_ids'
                        options can be used at the same time.
            data_fraction - Fraction of dataset to be used. The complete dataset is used by default
        """
        root = env_settings().got10k_dir if root is None else root
        super().__init__('GOT10k', root, image_loader)

        # all folders inside the root
        self.sequence_list = self._get_sequence_list()

        # seq_id is the index of the folder inside the got10k root path
        if split is not None:
            if seq_ids is not None:
                raise ValueError('Cannot set both split_name and seq_ids.')
            ltr_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), '..')
            if split == 'train':
                file_path = os.path.join(ltr_path, 'data_specs', 'got10k_train_split.txt')
            elif split == 'val':
                file_path = os.path.join(ltr_path, 'data_specs', 'got10k_val_split.txt')
            elif split == 'train_full':
                file_path = os.path.join(ltr_path, 'data_specs', 'got10k_train_full_split.txt')
            elif split == 'vottrain':
                file_path = os.path.join(ltr_path, 'data_specs', 'got10k_vot_train_split.txt')
            elif split == 'votval':
                file_path = os.path.join(ltr_path, 'data_specs', 'got10k_vot_val_split.txt')
            else:
                raise ValueError('Unknown split name.')
            # seq_ids = pandas.read_csv(file_path, header=None, squeeze=True, dtype=np.int64).values.tolist()
            seq_ids = pandas.read_csv(file_path, header=None, dtype=np.int64).squeeze("columns").values.tolist()
        elif seq_ids is None:
            seq_ids = list(range(0, len(self.sequence_list)))

        self.sequence_list = [self.sequence_list[i] for i in seq_ids]

        if data_fraction is not None:
            self.sequence_list = random.sample(self.sequence_list, int(len(self.sequence_list)*data_fraction))

        self.sequence_meta_info = self._load_meta_info()
        self.seq_per_class = self._build_seq_per_class()

        self.class_list = list(self.seq_per_class.keys())
        self.class_list.sort()

    def get_name(self):
        return 'got10k'

    def has_class_info(self):
        return True

    def has_occlusion_info(self):
        return True

    def _load_meta_info(self):
        sequence_meta_info = {s: self._read_meta(os.path.join(self.root, s)) for s in self.sequence_list}
        return sequence_meta_info

    def _read_meta(self, seq_path):
        try:
            with open(os.path.join(seq_path, 'meta_info.ini')) as f:
                meta_info = f.readlines()
            object_meta = OrderedDict({'object_class_name': meta_info[5].split(': ')[-1][:-1],
                                       'motion_class': meta_info[6].split(': ')[-1][:-1],
                                       'major_class': meta_info[7].split(': ')[-1][:-1],
                                       'root_class': meta_info[8].split(': ')[-1][:-1],
                                       'motion_adverb': meta_info[9].split(': ')[-1][:-1]})
        except:
            object_meta = OrderedDict({'object_class_name': None,
                                       'motion_class': None,
                                       'major_class': None,
                                       'root_class': None,
                                       'motion_adverb': None})
        return object_meta

    def _build_seq_per_class(self):
        seq_per_class = {}

        for i, s in enumerate(self.sequence_list):
            object_class = self.sequence_meta_info[s]['object_class_name']
            if object_class in seq_per_class:
                seq_per_class[object_class].append(i)
            else:
                seq_per_class[object_class] = [i]

        return seq_per_class

    def get_sequences_in_class(self, class_name):
        return self.seq_per_class[class_name]

    def _get_sequence_list(self):
        with open(os.path.join(self.root, 'list.txt')) as f:
            dir_list = list(csv.reader(f))
        dir_list = [dir_name[0] for dir_name in dir_list]
        return dir_list

    def _read_bb_anno(self, seq_path):
        bb_anno_file = os.path.join(seq_path, "groundtruth.txt")
        gt = pandas.read_csv(bb_anno_file, delimiter=',', header=None, dtype=np.float32, na_filter=False, low_memory=False).values
        return torch.tensor(gt)

    def _read_target_visible(self, seq_path):
        # Read full occlusion and out_of_view
        occlusion_file = os.path.join(seq_path, "absence.label")
        cover_file = os.path.join(seq_path, "cover.label")

        with open(occlusion_file, 'r', newline='') as f:
            occlusion = torch.ByteTensor([int(v[0]) for v in csv.reader(f)])
        with open(cover_file, 'r', newline='') as f:
            cover = torch.ByteTensor([int(v[0]) for v in csv.reader(f)])

        target_visible = ~occlusion & (cover>0).byte()

        visible_ratio = cover.float() / 8
        return target_visible, visible_ratio

    def _get_sequence_path(self, seq_id):
        return os.path.join(self.root, self.sequence_list[seq_id])

    def get_sequence_info(self, seq_id):
        seq_path = self._get_sequence_path(seq_id)
        bbox = self._read_bb_anno(seq_path)

        valid = (bbox[:, 2] > 0) & (bbox[:, 3] > 0)
        visible, visible_ratio = self._read_target_visible(seq_path)
        visible = visible & valid.byte()

        return {'bbox': bbox, 'valid': valid, 'visible': visible, 'visible_ratio': visible_ratio}

    def _get_frame_path(self, seq_path, frame_id):
        return os.path.join(seq_path, '{:08}.jpg'.format(frame_id+1))    # frames start from 1

    def _get_frame(self, seq_path, frame_id):
        return self.image_loader(self._get_frame_path(seq_path, frame_id))

    def get_class_name(self, seq_id):
        obj_meta = self.sequence_meta_info[self.sequence_list[seq_id]]

        return obj_meta['object_class_name']

    def get_frames(self, seq_id, frame_ids, anno=None):
        seq_path = self._get_sequence_path(seq_id)
        obj_meta = self.sequence_meta_info[self.sequence_list[seq_id]]

        frame_list = [self._get_frame(seq_path, f_id) for f_id in frame_ids]

        if anno is None:
            anno = self.get_sequence_info(seq_id)

        anno_frames = {}
        for key, value in anno.items():
            anno_frames[key] = [value[f_id, ...].clone() for f_id in frame_ids]

        return frame_list, anno_frames, obj_meta