coco.py 5.62 KB
Newer Older
bailuo's avatar
init  
bailuo committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import os
from .base_image_dataset import BaseImageDataset
import torch
import random
from collections import OrderedDict
from lib.train.data import jpeg4py_loader
from lib.train.admin import env_settings
from pycocotools.coco import COCO


class MSCOCO(BaseImageDataset):
    """ The COCO object detection dataset.

    Publication:
        Microsoft COCO: Common Objects in Context.
        Tsung-Yi Lin, Michael Maire, Serge J. Belongie, Lubomir D. Bourdev, Ross B. Girshick, James Hays, Pietro Perona,
        Deva Ramanan, Piotr Dollar and C. Lawrence Zitnick
        ECCV, 2014
        https://arxiv.org/pdf/1405.0312.pdf

    Download the images along with annotations from http://cocodataset.org/#download. The root folder should be
    organized as follows.
        - coco_root
            - annotations
                - instances_train2014.json
                - instances_train2017.json
            - images
                - train2014
                - train2017

    Note: You also have to install the coco pythonAPI from https://github.com/cocodataset/cocoapi.
    """

    def __init__(self, root=None, image_loader=jpeg4py_loader, data_fraction=None, min_area=None,
                 split="train", version="2014"):
        """
        args:
            root - path to coco root folder
            image_loader (jpeg4py_loader) - The function to read the images. jpeg4py (https://github.com/ajkxyz/jpeg4py)
                                            is used by default.
            data_fraction - Fraction of dataset to be used. The complete dataset is used by default
            min_area - Objects with area less than min_area are filtered out. Default is 0.0
            split - 'train' or 'val'.
            version - version of coco dataset (2014 or 2017)
        """

        root = env_settings().coco_dir if root is None else root
        super().__init__('COCO', root, image_loader)

        self.img_pth = os.path.join(root, 'images/{}{}/'.format(split, version))
        self.anno_path = os.path.join(root, 'annotations/instances_{}{}.json'.format(split, version))

        self.coco_set = COCO(self.anno_path)

        self.cats = self.coco_set.cats

        self.class_list = self.get_class_list()  # the parent class thing would happen in the sampler

        self.image_list = self._get_image_list(min_area=min_area)

        if data_fraction is not None:
            self.image_list = random.sample(self.image_list, int(len(self.image_list) * data_fraction))
        self.im_per_class = self._build_im_per_class()

    def _get_image_list(self, min_area=None):
        ann_list = list(self.coco_set.anns.keys())
        image_list = [a for a in ann_list if self.coco_set.anns[a]['iscrowd'] == 0]

        if min_area is not None:
            image_list = [a for a in image_list if self.coco_set.anns[a]['area'] > min_area]

        return image_list

    def get_num_classes(self):
        return len(self.class_list)

    def get_name(self):
        return 'coco'

    def has_class_info(self):
        return True

    def has_segmentation_info(self):
        return True

    def get_class_list(self):
        class_list = []
        for cat_id in self.cats.keys():
            class_list.append(self.cats[cat_id]['name'])
        return class_list

    def _build_im_per_class(self):
        im_per_class = {}
        for i, im in enumerate(self.image_list):
            class_name = self.cats[self.coco_set.anns[im]['category_id']]['name']
            if class_name not in im_per_class:
                im_per_class[class_name] = [i]
            else:
                im_per_class[class_name].append(i)

        return im_per_class

    def get_images_in_class(self, class_name):
        return self.im_per_class[class_name]

    def get_image_info(self, im_id):
        anno = self._get_anno(im_id)

        bbox = torch.Tensor(anno['bbox']).view(4,)

        mask = torch.Tensor(self.coco_set.annToMask(anno))

        valid = (bbox[2] > 0) & (bbox[3] > 0)
        visible = valid.clone().byte()

        return {'bbox': bbox, 'mask': mask, 'valid': valid, 'visible': visible}

    def _get_anno(self, im_id):
        anno = self.coco_set.anns[self.image_list[im_id]]

        return anno

    def _get_image(self, im_id):
        path = self.coco_set.loadImgs([self.coco_set.anns[self.image_list[im_id]]['image_id']])[0]['file_name']
        img = self.image_loader(os.path.join(self.img_pth, path))
        return img

    def get_meta_info(self, im_id):
        try:
            cat_dict_current = self.cats[self.coco_set.anns[self.image_list[im_id]]['category_id']]
            object_meta = OrderedDict({'object_class_name': cat_dict_current['name'],
                                       'motion_class': None,
                                       'major_class': cat_dict_current['supercategory'],
                                       'root_class': None,
                                       'motion_adverb': None})
        except:
            object_meta = OrderedDict({'object_class_name': None,
                                       'motion_class': None,
                                       'major_class': None,
                                       'root_class': None,
                                       'motion_adverb': None})
        return object_meta

    def get_class_name(self, im_id):
        cat_dict_current = self.cats[self.coco_set.anns[self.image_list[im_id]]['category_id']]
        return cat_dict_current['name']

    def get_image(self, image_id, anno=None):
        frame = self._get_image(image_id)

        if anno is None:
            anno = self.get_image_info(image_id)

        object_meta = self.get_meta_info(image_id)

        return frame, anno, object_meta