artrack_seq.py 25.9 KB
Newer Older
bailuo's avatar
init  
bailuo committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
from . import BaseActor
from lib.utils.misc import NestedTensor
from lib.utils.box_ops import box_cxcywh_to_xyxy, box_xywh_to_xyxy
import torch
import math
import numpy as np
import numpy
import cv2
import torch.nn.functional as F
import torchvision.transforms.functional as tvisf
import lib.train.data.bounding_box_utils as bbutils
from lib.utils.merge import merge_template_search
from torch.distributions.categorical import Categorical
from ...utils.heapmap_utils import generate_heatmap
from ...utils.ce_utils import generate_mask_cond, adjust_keep_rate


def IoU(rect1, rect2):
    """ caculate interection over union
    Args:
        rect1: (x1, y1, x2, y2)
        rect2: (x1, y1, x2, y2)
    Returns:
        iou
    """
    # overlap
    x1, y1, x2, y2 = rect1[0], rect1[1], rect1[2], rect1[3]
    tx1, ty1, tx2, ty2 = rect2[0], rect2[1], rect2[2], rect2[3]

    xx1 = np.maximum(tx1, x1)
    yy1 = np.maximum(ty1, y1)
    xx2 = np.minimum(tx2, x2)
    yy2 = np.minimum(ty2, y2)

    ww = np.maximum(0, xx2 - xx1)
    hh = np.maximum(0, yy2 - yy1)

    area = (x2 - x1) * (y2 - y1)
    target_a = (tx2 - tx1) * (ty2 - ty1)
    inter = ww * hh
    iou = inter / (area + target_a - inter)
    return iou


def fp16_clamp(x, min=None, max=None):
    if not x.is_cuda and x.dtype == torch.float16:
        # clamp for cpu float16, tensor fp16 has no clamp implementation
        return x.float().clamp(min, max).half()

    return x.clamp(min, max)


def generate_sa_simdr(joints):
    '''
    :param joints:  [num_joints, 3]
    :param joints_vis: [num_joints, 3]
    :return: target, target_weight(1: visible, 0: invisible)
    '''
    num_joints = 48
    image_size = [256, 256]
    simdr_split_ratio = 1.5625
    sigma = 6

    target_x1 = np.zeros((num_joints,
                          int(image_size[0] * simdr_split_ratio)),
                         dtype=np.float32)
    target_y1 = np.zeros((num_joints,
                          int(image_size[1] * simdr_split_ratio)),
                         dtype=np.float32)
    target_x2 = np.zeros((num_joints,
                          int(image_size[0] * simdr_split_ratio)),
                         dtype=np.float32)
    target_y2 = np.zeros((num_joints,
                          int(image_size[1] * simdr_split_ratio)),
                         dtype=np.float32)
    zero_4_begin = np.zeros((num_joints, 1), dtype=np.float32)

    tmp_size = sigma * 3

    for joint_id in range(num_joints):
        mu_x1 = joints[joint_id][0]
        mu_y1 = joints[joint_id][1]
        mu_x2 = joints[joint_id][2]
        mu_y2 = joints[joint_id][3]

        x1 = np.arange(0, int(image_size[0] * simdr_split_ratio), 1, np.float32)
        y1 = np.arange(0, int(image_size[1] * simdr_split_ratio), 1, np.float32)
        x2 = np.arange(0, int(image_size[0] * simdr_split_ratio), 1, np.float32)
        y2 = np.arange(0, int(image_size[1] * simdr_split_ratio), 1, np.float32)

        target_x1[joint_id] = (np.exp(- ((x1 - mu_x1) ** 2) / (2 * sigma ** 2))) / (
                sigma * np.sqrt(np.pi * 2))
        target_y1[joint_id] = (np.exp(- ((y1 - mu_y1) ** 2) / (2 * sigma ** 2))) / (
                sigma * np.sqrt(np.pi * 2))
        target_x2[joint_id] = (np.exp(- ((x2 - mu_x2) ** 2) / (2 * sigma ** 2))) / (
                sigma * np.sqrt(np.pi * 2))
        target_y2[joint_id] = (np.exp(- ((y2 - mu_y2) ** 2) / (2 * sigma ** 2))) / (
                sigma * np.sqrt(np.pi * 2))
    return target_x1, target_y1, target_x2, target_y2


# angle cost
def SIoU_loss(test1, test2, theta=4):
    eps = 1e-7
    cx_pred = (test1[:, 0] + test1[:, 2]) / 2
    cy_pred = (test1[:, 1] + test1[:, 3]) / 2
    cx_gt = (test2[:, 0] + test2[:, 2]) / 2
    cy_gt = (test2[:, 1] + test2[:, 3]) / 2

    dist = ((cx_pred - cx_gt) ** 2 + (cy_pred - cy_gt) ** 2) ** 0.5
    ch = torch.max(cy_gt, cy_pred) - torch.min(cy_gt, cy_pred)
    x = ch / (dist + eps)

    angle = 1 - 2 * torch.sin(torch.arcsin(x) - torch.pi / 4) ** 2
    # distance cost
    xmin = torch.min(test1[:, 0], test2[:, 0])
    xmax = torch.max(test1[:, 2], test2[:, 2])
    ymin = torch.min(test1[:, 1], test2[:, 1])
    ymax = torch.max(test1[:, 3], test2[:, 3])
    cw = xmax - xmin
    ch = ymax - ymin
    px = ((cx_gt - cx_pred) / (cw + eps)) ** 2
    py = ((cy_gt - cy_pred) / (ch + eps)) ** 2
    gama = 2 - angle
    dis = (1 - torch.exp(-1 * gama * px)) + (1 - torch.exp(-1 * gama * py))

    # shape cost
    w_pred = test1[:, 2] - test1[:, 0]
    h_pred = test1[:, 3] - test1[:, 1]
    w_gt = test2[:, 2] - test2[:, 0]
    h_gt = test2[:, 3] - test2[:, 1]
    ww = torch.abs(w_pred - w_gt) / (torch.max(w_pred, w_gt) + eps)
    wh = torch.abs(h_gt - h_pred) / (torch.max(h_gt, h_pred) + eps)
    omega = (1 - torch.exp(-1 * wh)) ** theta + (1 - torch.exp(-1 * ww)) ** theta

    # IoU loss
    lt = torch.max(test1[..., :2], test2[..., :2])  # [B, rows, 2]
    rb = torch.min(test1[..., 2:], test2[..., 2:])  # [B, rows, 2]

    wh = fp16_clamp(rb - lt, min=0)
    overlap = wh[..., 0] * wh[..., 1]
    area1 = (test1[..., 2] - test1[..., 0]) * (
            test1[..., 3] - test1[..., 1])
    area2 = (test2[..., 2] - test2[..., 0]) * (
            test2[..., 3] - test2[..., 1])
    iou = overlap / (area1 + area2 - overlap)

    SIoU = 1 - iou + (omega + dis) / 2
    return SIoU, iou


def ciou(pred, target, eps=1e-7):
    # overlap
    lt = torch.max(pred[:, :2], target[:, :2])
    rb = torch.min(pred[:, 2:], target[:, 2:])
    wh = (rb - lt).clamp(min=0)
    overlap = wh[:, 0] * wh[:, 1]

    # union
    ap = (pred[:, 2] - pred[:, 0]) * (pred[:, 3] - pred[:, 1])
    ag = (target[:, 2] - target[:, 0]) * (target[:, 3] - target[:, 1])
    union = ap + ag - overlap + eps

    # IoU
    ious = overlap / union

    # enclose area
    enclose_x1y1 = torch.min(pred[:, :2], target[:, :2])
    enclose_x2y2 = torch.max(pred[:, 2:], target[:, 2:])
    enclose_wh = (enclose_x2y2 - enclose_x1y1).clamp(min=0)

    cw = enclose_wh[:, 0]
    ch = enclose_wh[:, 1]

    c2 = cw ** 2 + ch ** 2 + eps

    b1_x1, b1_y1 = pred[:, 0], pred[:, 1]
    b1_x2, b1_y2 = pred[:, 2], pred[:, 3]
    b2_x1, b2_y1 = target[:, 0], target[:, 1]
    b2_x2, b2_y2 = target[:, 2], target[:, 3]

    w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps
    w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps

    left = ((b2_x1 + b2_x2) - (b1_x1 + b1_x2)) ** 2 / 4
    right = ((b2_y1 + b2_y2) - (b1_y1 + b1_y2)) ** 2 / 4
    rho2 = left + right

    factor = 4 / math.pi ** 2
    v = factor * torch.pow(torch.atan(w2 / h2) - torch.atan(w1 / h1), 2)

    # CIoU
    cious = ious - (rho2 / c2 + v ** 2 / (1 - ious + v))
    return cious, ious


class ARTrackSeqActor(BaseActor):
    """ Actor for training OSTrack models """

    def __init__(self, net, objective, loss_weight, settings, bins, search_size, cfg=None):
        super().__init__(net, objective)
        self.loss_weight = loss_weight
        self.settings = settings
        self.bs = self.settings.batchsize  # batch size
        self.cfg = cfg
        self.bins = bins
        self.search_size = search_size
        self.logsoftmax = torch.nn.LogSoftmax(dim=1)
        self.focal = None
        self.range = cfg.MODEL.RANGE
        self.pre_num = cfg.MODEL.PRENUM
        self.loss_weight['KL'] = 0
        self.loss_weight['focal'] = 0
        self.pre_bbox = None
        self.x_feat_rem = None
        self.update_rem = None

    def __call__(self, data):
        """
        args:
            data - The input data, should contain the fields 'template', 'search', 'gt_bbox'.
            template_images: (N_t, batch, 3, H, W)
            search_images: (N_s, batch, 3, H, W)
        returns:
            loss    - the training loss
            status  -  dict containing detailed losses
        """
        # forward pass
        out_dict = self.forward_pass(data)

        # compute losses
        loss, status = self.compute_losses(out_dict, data)

        return loss, status

    def _bbox_clip(self, cx, cy, width, height, boundary):
        cx = max(0, min(cx, boundary[1]))
        cy = max(0, min(cy, boundary[0]))
        width = max(10, min(width, boundary[1]))
        height = max(10, min(height, boundary[0]))
        return cx, cy, width, height

    def get_subwindow(self, im, pos, model_sz, original_sz, avg_chans):
        """
        args:
            im: bgr based image
            pos: center position
            model_sz: exemplar size
            s_z: original size
            avg_chans: channel average
        """
        if isinstance(pos, float):
            pos = [pos, pos]
        sz = original_sz
        im_sz = im.shape
        c = (original_sz + 1) / 2
        # context_xmin = round(pos[0] - c) # py2 and py3 round
        context_xmin = np.floor(pos[0] - c + 0.5)
        context_xmax = context_xmin + sz - 1
        # context_ymin = round(pos[1] - c)
        context_ymin = np.floor(pos[1] - c + 0.5)
        context_ymax = context_ymin + sz - 1
        left_pad = int(max(0., -context_xmin))
        top_pad = int(max(0., -context_ymin))
        right_pad = int(max(0., context_xmax - im_sz[1] + 1))
        bottom_pad = int(max(0., context_ymax - im_sz[0] + 1))

        context_xmin = context_xmin + left_pad
        context_xmax = context_xmax + left_pad
        context_ymin = context_ymin + top_pad
        context_ymax = context_ymax + top_pad

        r, c, k = im.shape
        if any([top_pad, bottom_pad, left_pad, right_pad]):
            size = (r + top_pad + bottom_pad, c + left_pad + right_pad, k)
            te_im = np.zeros(size, np.uint8)
            te_im[top_pad:top_pad + r, left_pad:left_pad + c, :] = im
            if top_pad:
                te_im[0:top_pad, left_pad:left_pad + c, :] = avg_chans
            if bottom_pad:
                te_im[r + top_pad:, left_pad:left_pad + c, :] = avg_chans
            if left_pad:
                te_im[:, 0:left_pad, :] = avg_chans
            if right_pad:
                te_im[:, c + left_pad:, :] = avg_chans
            im_patch = te_im[int(context_ymin):int(context_ymax + 1),
                       int(context_xmin):int(context_xmax + 1), :]
        else:
            im_patch = im[int(context_ymin):int(context_ymax + 1),
                       int(context_xmin):int(context_xmax + 1), :]

        if not np.array_equal(model_sz, original_sz):
            try:
                im_patch = cv2.resize(im_patch, (model_sz, model_sz))
            except:
                return None
        im_patch = im_patch.transpose(2, 0, 1)
        im_patch = im_patch[np.newaxis, :, :, :]
        im_patch = im_patch.astype(np.float32)
        im_patch = torch.from_numpy(im_patch)
        im_patch = im_patch.cuda()
        return im_patch

    def batch_init(self, images, template_bbox, initial_bbox) -> dict:
        self.frame_num = 1
        self.device = 'cuda'
        # Convert bbox (x1, y1, w, h) -> (cx, cy, w, h)

        template_bbox = bbutils.batch_xywh2center2(template_bbox)  # ndarray:(2*num_seq,4)
        initial_bbox = bbutils.batch_xywh2center2(initial_bbox)  # ndarray:(2*num_seq,4)
        self.center_pos = initial_bbox[:, :2]  # ndarray:(2*num_seq,2)
        self.size = initial_bbox[:, 2:]  # ndarray:(2*num_seq,2)
        self.pre_bbox = initial_bbox
        for i in range(self.pre_num - 1):
            self.pre_bbox = numpy.concatenate((self.pre_bbox, initial_bbox), axis=1)
        # print(self.pre_bbox.shape)

        template_factor = self.cfg.DATA.TEMPLATE.FACTOR
        w_z = template_bbox[:, 2] * template_factor  # ndarray:(2*num_seq)
        h_z = template_bbox[:, 3] * template_factor  # ndarray:(2*num_seq)
        s_z = np.ceil(np.sqrt(w_z * h_z))  # ndarray:(2*num_seq)

        self.channel_average = []
        for img in images:
            self.channel_average.append(np.mean(img, axis=(0, 1)))
        self.channel_average = np.array(self.channel_average)  # ndarray:(2*num_seq,3)

        # get crop
        z_crop_list = []
        for i in range(len(images)):
            here_crop = self.get_subwindow(images[i], template_bbox[i, :2],
                                           self.cfg.DATA.TEMPLATE.SIZE, s_z[i], self.channel_average[i])
            z_crop = here_crop.float().mul(1.0 / 255.0).clamp(0.0, 1.0)
            self.mean = [0.485, 0.456, 0.406]
            self.std = [0.229, 0.224, 0.225]
            self.inplace = False
            z_crop[0] = tvisf.normalize(z_crop[0], self.mean, self.std, self.inplace)
            z_crop_list.append(z_crop.clone())
        z_crop = torch.cat(z_crop_list, dim=0)  # Tensor(2*num_seq,3,128,128)

        self.update_rem = None

        out = {'template_images': z_crop}
        return out

    def batch_track(self, img, gt_boxes, template, action_mode='max') -> dict:
        search_factor = self.cfg.DATA.SEARCH.FACTOR
        w_x = self.size[:, 0] * search_factor
        h_x = self.size[:, 1] * search_factor
        s_x = np.ceil(np.sqrt(w_x * h_x))

        gt_boxes_corner = bbutils.batch_xywh2corner(gt_boxes)  # ndarray:(2*num_seq,4)

        x_crop_list = []
        gt_in_crop_list = []
        pre_seq_list = []
        pre_seq_in_list = []
        x_feat_list = []

        magic_num = (self.range - 1) * 0.5
        for i in range(len(img)):
            channel_avg = np.mean(img[i], axis=(0, 1))
            x_crop = self.get_subwindow(img[i], self.center_pos[i], self.cfg.DATA.SEARCH.SIZE,
                                        round(s_x[i]), channel_avg)
            if x_crop == None:
                return None
            for q in range(self.pre_num):
                pre_seq_temp = bbutils.batch_center2corner(self.pre_bbox[:, 0 + 4 * q:4 + 4 * q])
                if q == 0:
                    pre_seq = pre_seq_temp
                else:
                    pre_seq = numpy.concatenate((pre_seq, pre_seq_temp), axis=1)

            if gt_boxes_corner is not None and np.sum(np.abs(gt_boxes_corner[i] - np.zeros(4))) > 10:
                pre_in = np.zeros(4 * self.pre_num)
                for w in range(self.pre_num):

                    pre_in[0 + w * 4:2 + w * 4] = pre_seq[i, 0 + w * 4:2 + w * 4] - self.center_pos[i]
                    pre_in[2 + w * 4:4 + w * 4] = pre_seq[i, 2 + w * 4:4 + w * 4] - self.center_pos[i]
                    pre_in[0 + w * 4:4 + w * 4] = pre_in[0 + w * 4:4 + w * 4] * (
                                self.cfg.DATA.SEARCH.SIZE / s_x[i]) + self.cfg.DATA.SEARCH.SIZE / 2
                    pre_in[0 + w * 4:4 + w * 4] = pre_in[0 + w * 4:4 + w * 4] / self.cfg.DATA.SEARCH.SIZE

                pre_seq_list.append(pre_in)
                gt_in_crop = np.zeros(4)
                gt_in_crop[:2] = gt_boxes_corner[i, :2] - self.center_pos[i]
                gt_in_crop[2:] = gt_boxes_corner[i, 2:] - self.center_pos[i]
                gt_in_crop = gt_in_crop * (self.cfg.DATA.SEARCH.SIZE / s_x[i]) + self.cfg.DATA.SEARCH.SIZE / 2
                gt_in_crop[2:] = gt_in_crop[2:] - gt_in_crop[:2]  # (x1,y1,x2,y2) to (x1,y1,w,h)
                gt_in_crop_list.append(gt_in_crop)
            else:
                pre_in = np.zeros(4 * self.pre_num)
                pre_seq_list.append(pre_in)
                gt_in_crop_list.append(np.zeros(4))
            pre_seq_input = torch.from_numpy(pre_in).clamp(-1 * magic_num, 1 + magic_num)
            pre_seq_input = (pre_seq_input + 0.5) * (self.bins - 1)
            pre_seq_in_list.append(pre_seq_input.clone())
            x_crop = x_crop.float().mul(1.0 / 255.0).clamp(0.0, 1.0)
            x_crop[0] = tvisf.normalize(x_crop[0], self.mean, self.std, self.inplace)
            x_crop_list.append(x_crop.clone())

        x_crop = torch.cat(x_crop_list, dim=0)
        pre_seq_output = torch.cat(pre_seq_in_list, dim=0).reshape(-1, 4 * self.pre_num)

        outputs = self.net(template, x_crop, seq_input=pre_seq_output, head_type=None, stage="batch_track",
                           search_feature=self.x_feat_rem, update=None)
        selected_indices = outputs['seqs'].detach()
        x_feat = outputs['x_feat'].detach().cpu()
        self.x_feat_rem = x_feat.clone()
        x_feat_list.append(x_feat.clone())

        pred_bbox = selected_indices[:, 0:4].data.cpu().numpy()
        bbox = (pred_bbox / (self.bins - 1) - magic_num) * s_x.reshape(-1, 1)
        cx = bbox[:, 0] + self.center_pos[:, 0] - s_x / 2
        cy = bbox[:, 1] + self.center_pos[:, 1] - s_x / 2
        width = bbox[:, 2] - bbox[:, 0]
        height = bbox[:, 3] - bbox[:, 1]
        cx = cx + width / 2
        cy = cy + height / 2

        for i in range(len(img)):
            cx[i], cy[i], width[i], height[i] = self._bbox_clip(cx[i], cy[i], width[i],
                                                                height[i], img[i].shape[:2])
        self.center_pos = np.stack([cx, cy], 1)
        self.size = np.stack([width, height], 1)
        for e in range(self.pre_num):
            if e != self.pre_num - 1:
                self.pre_bbox[:, 0 + e * 4:4 + e * 4] = self.pre_bbox[:, 4 + e * 4:8 + e * 4]
            else:
                self.pre_bbox[:, 0 + e * 4:4 + e * 4] = numpy.stack([cx, cy, width, height], 1)

        bbox = np.stack([cx - width / 2, cy - height / 2, width, height], 1)

        out = {
            'search_images': x_crop,
            'pred_bboxes': bbox,
            'selected_indices': selected_indices.cpu(),
            'gt_in_crop': torch.tensor(np.stack(gt_in_crop_list, axis=0), dtype=torch.float),
            'pre_seq': torch.tensor(np.stack(pre_seq_list, axis=0), dtype=torch.float),
            'x_feat': torch.tensor([item.cpu().detach().numpy() for item in x_feat_list], dtype=torch.float),
        }

        return out

    def explore(self, data):
        results = {}
        search_images_list = []
        search_anno_list = []
        iou_list = []
        pre_seq_list = []
        x_feat_list = []

        num_frames = data['num_frames']
        images = data['search_images']
        gt_bbox = data['search_annos']
        template = data['template_images']
        template_bbox = data['template_annos']

        template = template
        template_bbox = template_bbox
        template_bbox = np.array(template_bbox)
        num_seq = len(num_frames)

        for idx in range(np.max(num_frames)):
            here_images = [img[idx] for img in images]  # S, N
            here_gt_bbox = np.array([gt[idx] for gt in gt_bbox])

            here_images = here_images
            here_gt_bbox = np.concatenate([here_gt_bbox], 0)

            if idx == 0:
                outputs_template = self.batch_init(template, template_bbox, here_gt_bbox)
                results['template_images'] = outputs_template['template_images']

            else:
                outputs = self.batch_track(here_images, here_gt_bbox, outputs_template['template_images'],
                                           action_mode='half')
                if outputs == None:
                    return None

                x_feat = outputs['x_feat']
                pred_bbox = outputs['pred_bboxes']
                search_images_list.append(outputs['search_images'])
                search_anno_list.append(outputs['gt_in_crop'])
                if len(outputs['pre_seq']) != 8:
                    print(outputs['pre_seq'])
                    print(len(outputs['pre_seq']))
                    print(idx)
                    print(data['num_frames'])
                    print(data['search_annos'])
                    return None
                pre_seq_list.append(outputs['pre_seq'])
                pred_bbox_corner = bbutils.batch_xywh2corner(pred_bbox)
                gt_bbox_corner = bbutils.batch_xywh2corner(here_gt_bbox)
                here_iou = []
                for i in range(num_seq):
                    bbox_iou = IoU(pred_bbox_corner[i], gt_bbox_corner[i])
                    here_iou.append(bbox_iou)
                iou_list.append(here_iou)
                x_feat_list.append(x_feat.clone())

        results['x_feat'] = torch.cat([torch.stack(x_feat_list)], dim=2)

        results['search_images'] = torch.cat([torch.stack(search_images_list)],
                                             dim=1)
        results['search_anno'] = torch.cat([torch.stack(search_anno_list)],
                                           dim=1)
        results['pre_seq'] = torch.cat([torch.stack(pre_seq_list)], dim=1)

        iou_tensor = torch.tensor(iou_list, dtype=torch.float)
        results['baseline_iou'] = torch.cat([iou_tensor[:, :num_seq]], dim=1)


        return results

    def forward_pass(self, data):
        # currently only support 1 template and 1 search region
        assert len(data['template_images']) == 1
        assert len(data['search_images']) == 1

        template_list = []
        for i in range(self.settings.num_template):
            template_img_i = data['template_images'][i].view(-1,
                                                             *data['template_images'].shape[2:])  # (batch, 3, 128, 128)
            template_list.append(template_img_i)

        search_img = data['search_images'][0].view(-1, *data['search_images'].shape[2:])  # (batch, 3, 320, 320)

        box_mask_z = None
        ce_keep_rate = None
        if self.cfg.MODEL.BACKBONE.CE_LOC:
            box_mask_z = generate_mask_cond(self.cfg, template_list[0].shape[0], template_list[0].device,
                                            data['template_anno'][0])

            ce_start_epoch = self.cfg.TRAIN.CE_START_EPOCH
            ce_warm_epoch = self.cfg.TRAIN.CE_WARM_EPOCH
            ce_keep_rate = adjust_keep_rate(data['epoch'], warmup_epochs=ce_start_epoch,
                                            total_epochs=ce_start_epoch + ce_warm_epoch,
                                            ITERS_PER_EPOCH=1,
                                            base_keep_rate=self.cfg.MODEL.BACKBONE.CE_KEEP_RATIO[0])

        if len(template_list) == 1:
            template_list = template_list[0]
        gt_bbox = data['search_anno'][-1]
        begin = self.bins
        end = self.bins + 1
        gt_bbox[:, 2] = gt_bbox[:, 0] + gt_bbox[:, 2]
        gt_bbox[:, 3] = gt_bbox[:, 1] + gt_bbox[:, 3]
        gt_bbox = gt_bbox.clamp(min=0.5, max=1.5)
        data['real_bbox'] = gt_bbox
        seq_ori = gt_bbox * (self.bins - 1)
        seq_ori = seq_ori.int().to(search_img)
        B = seq_ori.shape[0]
        seq_input = torch.cat([torch.ones((B, 1)).to(search_img) * begin, seq_ori], dim=1)
        seq_output = torch.cat([seq_ori, torch.ones((B, 1)).to(search_img) * end], dim=1)
        data['seq_input'] = seq_input
        data['seq_output'] = seq_output
        out_dict = self.net(template=template_list,
                            search=search_img,
                            ce_template_mask=box_mask_z,
                            ce_keep_rate=ce_keep_rate,
                            return_last_attn=False,
                            seq_input=seq_input)

        return out_dict

    def compute_sequence_losses(self, data):
        num_frames = data['search_images'].shape[0]
        template_images = data['template_images'].repeat(num_frames, 1, 1, 1, 1)
        template_images = template_images.view(-1, *template_images.size()[2:])
        search_images = data['search_images'].reshape(-1, *data['search_images'].size()[2:])
        search_anno = data['search_anno'].reshape(-1, *data['search_anno'].size()[2:])

        magic_num = (self.range - 1) * 0.5
        self.loss_weight['focal'] = 0
        pre_seq = data['pre_seq'].reshape(-1, 4 * self.pre_num)
        x_feat = data['x_feat'].reshape(-1, *data['x_feat'].size()[2:])
        pre_seq = pre_seq.clamp(-1 * magic_num, 1 + magic_num)
        pre_seq = (pre_seq + magic_num) * (self.bins - 1)

        outputs = self.net(template_images, search_images, seq_input=pre_seq, stage="forward_pass",
                           search_feature=x_feat, update=None)

        pred_feat = outputs["feat"]
        # generate labels
        if self.focal == None:
            weight = torch.ones(self.bins * self.range + 2) * 1
            weight[self.bins * self.range + 1] = 0.1
            weight[self.bins * self.range] = 0.1
            weight.to(pred_feat)
            self.focal = torch.nn.CrossEntropyLoss(weight=weight, size_average=True).to(pred_feat)

        search_anno[:, 2] = search_anno[:, 2] + search_anno[:, 0]
        search_anno[:, 3] = search_anno[:, 3] + search_anno[:, 1]
        target = (search_anno / self.cfg.DATA.SEARCH.SIZE + 0.5) * (self.bins - 1)

        target = target.clamp(min=0.0, max=(self.bins * self.range - 0.0001))
        target_iou = target
        target = torch.cat([target], dim=1)
        target = target.reshape(-1).to(torch.int64)
        pred = pred_feat.permute(1, 0, 2).reshape(-1, self.bins * self.range + 2)
        varifocal_loss = self.focal(pred, target)
        pred = pred_feat[0:4, :, 0:self.bins * self.range]
        target = target_iou[:, 0:4].to(pred_feat) / (self.bins - 1) - magic_num
        out = pred.softmax(-1).to(pred)
        mul = torch.range(-1 * magic_num + 1 / (self.bins * self.range), 1 + magic_num - 1 / (self.bins * self.range), 2 / (self.bins * self.range)).to(pred)
        ans = out * mul
        ans = ans.sum(dim=-1)
        ans = ans.permute(1, 0).to(pred)
        extra_seq = ans
        extra_seq = extra_seq.to(pred)

        cious, iou = SIoU_loss(extra_seq, target, 4)
        cious = cious.mean()

        giou_loss = cious
        loss_bb = self.loss_weight['giou'] * giou_loss + self.loss_weight[
            'focal'] * varifocal_loss

        total_losses = loss_bb

        mean_iou = iou.detach().mean()
        status = {"Loss/total": total_losses.item(),
                  "Loss/giou": giou_loss.item(),
                  "Loss/location": varifocal_loss.item(),
                  "IoU": mean_iou.item()}

        return total_losses, status