artrack.py 10.5 KB
Newer Older
bailuo's avatar
init  
bailuo committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
from . import BaseActor
from lib.utils.misc import NestedTensor
from lib.utils.box_ops import box_cxcywh_to_xyxy, box_xywh_to_xyxy
import torch
import math
import numpy as np
from lib.utils.merge import merge_template_search
from ...utils.heapmap_utils import generate_heatmap
from ...utils.ce_utils import generate_mask_cond, adjust_keep_rate

def fp16_clamp(x, min=None, max=None):
    if not x.is_cuda and x.dtype == torch.float16:
        # clamp for cpu float16, tensor fp16 has no clamp implementation
        return x.float().clamp(min, max).half()

    return x.clamp(min, max)
    
def generate_sa_simdr(joints):
    '''
    :param joints:  [num_joints, 3]
    :param joints_vis: [num_joints, 3]
    :return: target, target_weight(1: visible, 0: invisible)
    '''
    num_joints = 48
    image_size = [256, 256]
    simdr_split_ratio = 1.5625
    sigma = 6

    target_x1 = np.zeros((num_joints,
                              int(image_size[0] * simdr_split_ratio)),
                             dtype=np.float32)
    target_y1 = np.zeros((num_joints,
                              int(image_size[1] * simdr_split_ratio)),
                             dtype=np.float32)
    target_x2 = np.zeros((num_joints,
                              int(image_size[0] * simdr_split_ratio)),
                             dtype=np.float32)
    target_y2 = np.zeros((num_joints,
                              int(image_size[1] * simdr_split_ratio)),
                             dtype=np.float32)
    zero_4_begin = np.zeros((num_joints, 1), dtype=np.float32)

    tmp_size = sigma * 3

    for joint_id in range(num_joints):

        mu_x1 = joints[joint_id][0]
        mu_y1 = joints[joint_id][1]
        mu_x2 = joints[joint_id][2]
        mu_y2 = joints[joint_id][3]

        x1 = np.arange(0, int(image_size[0] * simdr_split_ratio), 1, np.float32)
        y1 = np.arange(0, int(image_size[1] * simdr_split_ratio), 1, np.float32)
        x2 = np.arange(0, int(image_size[0] * simdr_split_ratio), 1, np.float32)
        y2 = np.arange(0, int(image_size[1] * simdr_split_ratio), 1, np.float32)

        target_x1[joint_id] = (np.exp(- ((x1 - mu_x1) ** 2) / (2 * sigma ** 2))) / (
                        sigma * np.sqrt(np.pi * 2))
        target_y1[joint_id] = (np.exp(- ((y1 - mu_y1) ** 2) / (2 * sigma ** 2))) / (
                        sigma * np.sqrt(np.pi * 2))
        target_x2[joint_id] = (np.exp(- ((x2 - mu_x2) ** 2) / (2 * sigma ** 2))) / (
                        sigma * np.sqrt(np.pi * 2))
        target_y2[joint_id] = (np.exp(- ((y2 - mu_y2) ** 2) / (2 * sigma ** 2))) / (
                        sigma * np.sqrt(np.pi * 2))
    return target_x1, target_y1, target_x2, target_y2

# angle cost
def SIoU_loss(test1, test2, theta=4):
    eps = 1e-7
    cx_pred = (test1[:, 0] + test1[:, 2]) / 2
    cy_pred = (test1[:, 1] + test1[:, 3]) / 2
    cx_gt = (test2[:, 0] + test2[:, 2]) / 2
    cy_gt = (test2[:, 1] + test2[:, 3]) / 2

    dist = ((cx_pred - cx_gt)**2 + (cy_pred - cy_gt)**2) ** 0.5
    ch = torch.max(cy_gt, cy_pred) - torch.min(cy_gt, cy_pred)
    x = ch / (dist + eps)

    angle = 1 - 2*torch.sin(torch.arcsin(x)-torch.pi/4)**2
    # distance cost
    xmin = torch.min(test1[:, 0], test2[:, 0])
    xmax = torch.max(test1[:, 2], test2[:, 2])
    ymin = torch.min(test1[:, 1], test2[:, 1])
    ymax = torch.max(test1[:, 3], test2[:, 3])
    cw = xmax - xmin
    ch = ymax - ymin
    px = ((cx_gt - cx_pred) / (cw+eps))**2
    py = ((cy_gt - cy_pred) / (ch+eps))**2
    gama = 2 - angle
    dis = (1 - torch.exp(-1 * gama * px)) + (1 - torch.exp(-1 * gama * py))

    #shape cost
    w_pred = test1[:, 2] - test1[:, 0]
    h_pred = test1[:, 3] - test1[:, 1]
    w_gt = test2[:, 2] - test2[:, 0]
    h_gt = test2[:, 3] - test2[:, 1]
    ww = torch.abs(w_pred - w_gt) / (torch.max(w_pred, w_gt) + eps)
    wh = torch.abs(h_gt - h_pred) / (torch.max(h_gt, h_pred) + eps)
    omega = (1 - torch.exp(-1 * wh)) ** theta + (1 - torch.exp(-1 * ww)) ** theta

    #IoU loss
    lt = torch.max(test1[..., :2], test2[..., :2])  # [B, rows, 2]
    rb = torch.min(test1[..., 2:], test2[..., 2:])  # [B, rows, 2]

    wh = fp16_clamp(rb - lt, min=0)
    overlap = wh[..., 0] * wh[..., 1]
    area1 = (test1[..., 2] - test1[..., 0]) * (
            test1[..., 3] - test1[..., 1])
    area2 = (test2[..., 2] - test2[..., 0]) * (
            test2[..., 3] - test2[..., 1])
    iou = overlap / (area1 + area2 - overlap)

    SIoU = 1 - iou + (omega + dis) / 2
    return SIoU, iou
    
def ciou(pred, target, eps=1e-7):
    # overlap
    lt = torch.max(pred[:, :2], target[:, :2])
    rb = torch.min(pred[:, 2:], target[:, 2:])
    wh = (rb - lt).clamp(min=0)
    overlap = wh[:, 0] * wh[:, 1]

    # union
    ap = (pred[:, 2] - pred[:, 0]) * (pred[:, 3] - pred[:, 1])
    ag = (target[:, 2] - target[:, 0]) * (target[:, 3] - target[:, 1])
    union = ap + ag - overlap + eps

    # IoU
    ious = overlap / union

    # enclose area
    enclose_x1y1 = torch.min(pred[:, :2], target[:, :2])
    enclose_x2y2 = torch.max(pred[:, 2:], target[:, 2:])
    enclose_wh = (enclose_x2y2 - enclose_x1y1).clamp(min=0)

    cw = enclose_wh[:, 0]
    ch = enclose_wh[:, 1]

    c2 = cw**2 + ch**2 + eps

    b1_x1, b1_y1 = pred[:, 0], pred[:, 1]
    b1_x2, b1_y2 = pred[:, 2], pred[:, 3]
    b2_x1, b2_y1 = target[:, 0], target[:, 1]
    b2_x2, b2_y2 = target[:, 2], target[:, 3]

    w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps
    w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps

    left = ((b2_x1 + b2_x2) - (b1_x1 + b1_x2))**2 / 4
    right = ((b2_y1 + b2_y2) - (b1_y1 + b1_y2))**2 / 4
    rho2 = left + right

    factor = 4 / math.pi**2
    v = factor * torch.pow(torch.atan(w2 / h2) - torch.atan(w1 / h1), 2)

    # CIoU
    cious = ious - (rho2 / c2 + v**2 / (1 - ious + v))
    return cious, ious

class ARTrackActor(BaseActor):
    """ Actor for training ARTrack models """

    def __init__(self, net, objective, loss_weight, settings, bins, search_size, cfg=None):
        super().__init__(net, objective)
        self.loss_weight = loss_weight
        self.settings = settings
        self.bs = self.settings.batchsize  # batch size
        self.cfg = cfg
        self.bins = bins
        self.range = self.cfg.MODEL.RANGE
        self.search_size = search_size
        self.logsoftmax = torch.nn.LogSoftmax(dim=1)
        self.focal = None
        self.loss_weight['KL'] = 100
        self.loss_weight['focal'] = 2

    def __call__(self, data):
        """
        args:
            data - The input data, should contain the fields 'template', 'search', 'gt_bbox'.
            template_images: (N_t, batch, 3, H, W)
            search_images: (N_s, batch, 3, H, W)
        returns:
            loss    - the training loss
            status  -  dict containing detailed losses
        """
        # forward pass
        out_dict = self.forward_pass(data)

        # compute losses
        loss, status = self.compute_losses(out_dict, data)

        return loss, status

    def forward_pass(self, data):
        # currently only support 1 template and 1 search region
        assert len(data['template_images']) == 1
        assert len(data['search_images']) == 1

        template_list = []
        for i in range(self.settings.num_template):
            template_img_i = data['template_images'][i].view(-1,
                                                             *data['template_images'].shape[2:])  # (batch, 3, 128, 128)
            template_list.append(template_img_i)

        search_img = data['search_images'][0].view(-1, *data['search_images'].shape[2:])  # (batch, 3, 320, 320)

        if len(template_list) == 1:
            template_list = template_list[0]
        gt_bbox = data['search_anno'][-1]
        begin = self.bins * self.range
        end = self.bins * self.range + 1

        magic_num = (self.range - 1) * 0.5
        gt_bbox[:, 2] = gt_bbox[:, 0] + gt_bbox[:, 2]
        gt_bbox[:, 3] = gt_bbox[:, 1] + gt_bbox[:, 3]
        gt_bbox = gt_bbox.clamp(min=(-1*magic_num), max=(1+magic_num))
        data['real_bbox'] = gt_bbox

        seq_ori = (gt_bbox + magic_num) * (self.bins - 1)

        seq_ori = seq_ori.int().to(search_img)
        B = seq_ori.shape[0]
        seq_input = torch.cat([torch.ones((B, 1)).to(search_img) * begin, seq_ori], dim=1)
        seq_output = torch.cat([seq_ori, torch.ones((B, 1)).to(search_img) * end], dim=1)
        data['seq_input'] = seq_input
        data['seq_output'] = seq_output
        out_dict = self.net(template=template_list,
                            search=search_img,
                            seq_input=seq_input)

        return out_dict

    def compute_losses(self, pred_dict, gt_dict, return_status=True):
        bins = self.bins
        magic_num = (self.range - 1) * 0.5
        seq_output = gt_dict['seq_output']
        pred_feat = pred_dict["feat"]
        if self.focal == None:
            weight = torch.ones(bins*self.range+2) * 1
            weight[bins*self.range+1] = 0.1
            weight[bins*self.range] = 0.1
            weight.to(pred_feat)
            self.klloss = torch.nn.KLDivLoss(reduction='none').to(pred_feat)

            self.focal = torch.nn.CrossEntropyLoss(weight=weight, size_average=True).to(pred_feat)
        # compute varfifocal loss
        pred = pred_feat.permute(1, 0, 2).reshape(-1, bins*2+2)
        target = seq_output.reshape(-1).to(torch.int64)
        varifocal_loss = self.focal(pred, target)
        # compute giou and L1 loss
        beta = 1
        pred = pred_feat[0:4, :, 0:bins*self.range] * beta
        target = seq_output[:, 0:4].to(pred_feat)
        
        out = pred.softmax(-1).to(pred)
        mul = torch.range((-1*magic_num+1/(self.bins*self.range)), (1+magic_num-1/(self.bins*self.range)), 2/(self.bins*self.range)).to(pred)
        ans = out * mul
        ans = ans.sum(dim=-1)
        ans = ans.permute(1, 0).to(pred)
        target = target / (bins - 1) - magic_num
        extra_seq = ans
        extra_seq = extra_seq.to(pred)
        sious, iou = SIoU_loss(extra_seq, target, 4)
        sious = sious.mean()
        siou_loss = sious
        l1_loss = self.objective['l1'](extra_seq, target)

        loss = self.loss_weight['giou'] * siou_loss + self.loss_weight['l1'] * l1_loss + self.loss_weight['focal'] * varifocal_loss

        if return_status:
            # status for log
            mean_iou = iou.detach().mean()
            status = {"Loss/total": loss.item(),
                      "Loss/giou": siou_loss.item(),
                      "Loss/l1": l1_loss.item(),
                      "Loss/location": varifocal_loss.item(),
                      "IoU": mean_iou.item()}
            return loss, status
        else:
            return loss