votdataset.py 12.5 KB
Newer Older
bailuo's avatar
init  
bailuo committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
from typing import Union, TextIO

import numpy as np
from numba import jit

from lib.test.evaluation.data import SequenceList, BaseDataset, Sequence


class VOTDataset(BaseDataset):
    """
    VOT2018 dataset

    Publication:
        The sixth Visual Object Tracking VOT2018 challenge results.
        Matej Kristan, Ales Leonardis, Jiri Matas, Michael Felsberg, Roman Pfugfelder, Luka Cehovin Zajc, Tomas Vojir,
        Goutam Bhat, Alan Lukezic et al.
        ECCV, 2018
        https://prints.vicos.si/publications/365

    Download the dataset from http://www.votchallenge.net/vot2018/dataset.html
    """
    def __init__(self, year=18):
        super().__init__()
        self.year = year
        if year == 18:
            self.base_path = self.env_settings.vot18_path
        elif year == 20:
            self.base_path = self.env_settings.vot20_path
        elif year == 22:
            self.base_path = self.env_settings.vot22_path
        self.sequence_list = self._get_sequence_list(year)

    def get_sequence_list(self):
        return SequenceList([self._construct_sequence(s) for s in self.sequence_list])

    def _construct_sequence(self, sequence_name):
        sequence_path = sequence_name
        nz = 8
        ext = 'jpg'
        start_frame = 1

        anno_path = '{}/{}/groundtruth.txt'.format(self.base_path, sequence_name)

        if self.year == 18 or self.year == 22:
            try:
                ground_truth_rect = np.loadtxt(str(anno_path), dtype=np.float64)
            except:
                ground_truth_rect = np.loadtxt(str(anno_path), delimiter=',', dtype=np.float64)

            end_frame = ground_truth_rect.shape[0]

            frames = ['{base_path}/{sequence_path}/color/{frame:0{nz}}.{ext}'.format(base_path=self.base_path,
                      sequence_path=sequence_path, frame=frame_num, nz=nz, ext=ext)
                      for frame_num in range(start_frame, end_frame+1)]

            # Convert gt
            if ground_truth_rect.shape[1] > 4:
                gt_x_all = ground_truth_rect[:, [0, 2, 4, 6]]
                gt_y_all = ground_truth_rect[:, [1, 3, 5, 7]]

                x1 = np.amin(gt_x_all, 1).reshape(-1,1)
                y1 = np.amin(gt_y_all, 1).reshape(-1,1)
                x2 = np.amax(gt_x_all, 1).reshape(-1,1)
                y2 = np.amax(gt_y_all, 1).reshape(-1,1)

                ground_truth_rect = np.concatenate((x1, y1, x2-x1, y2-y1), 1)

        elif self.year == 20:
            ground_truth_rect = read_file(str(anno_path))
            ground_truth_rect = np.array(ground_truth_rect, dtype=np.float64)
            end_frame = ground_truth_rect.shape[0]

            frames = ['{base_path}/{sequence_path}/color/{frame:0{nz}}.{ext}'.format(base_path=self.base_path,
                                                                                     sequence_path=sequence_path,
                                                                                     frame=frame_num, nz=nz, ext=ext)
                      for frame_num in range(start_frame, end_frame + 1)]

        else:
            raise NotImplementedError

        return Sequence(sequence_name, frames, 'vot', ground_truth_rect)

    def __len__(self):
        return len(self.sequence_list)

    def _get_sequence_list(self, year):
        if year == 18:
            sequence_list= ['ants1',
                            'ants3',
                            'bag',
                            'ball1',
                            'ball2',
                            'basketball',
                            'birds1',
                            'blanket',
                            'bmx',
                            'bolt1',
                            'bolt2',
                            'book',
                            'butterfly',
                            'car1',
                            'conduction1',
                            'crabs1',
                            'crossing',
                            'dinosaur',
                            'drone_across',
                            'drone_flip',
                            'drone1',
                            'fernando',
                            'fish1',
                            'fish2',
                            'fish3',
                            'flamingo1',
                            'frisbee',
                            'girl',
                            'glove',
                            'godfather',
                            'graduate',
                            'gymnastics1',
                            'gymnastics2',
                            'gymnastics3',
                            'hand',
                            'handball1',
                            'handball2',
                            'helicopter',
                            'iceskater1',
                            'iceskater2',
                            'leaves',
                            'matrix',
                            'motocross1',
                            'motocross2',
                            'nature',
                            'pedestrian1',
                            'rabbit',
                            'racing',
                            'road',
                            'shaking',
                            'sheep',
                            'singer2',
                            'singer3',
                            'soccer1',
                            'soccer2',
                            'soldier',
                            'tiger',
                            'traffic',
                            'wiper',
                            'zebrafish1']
        elif year == 20:

            sequence_list= ['agility',
                            'ants1',
                            'ball2',
                            'ball3',
                            'basketball',
                            'birds1',
                            'bolt1',
                            'book',
                            'butterfly',
                            'car1',
                            'conduction1',
                            'crabs1',
                            'dinosaur',
                            'dribble',
                            'drone1',
                            'drone_across',
                            'drone_flip',
                            'fernando',
                            'fish1',
                            'fish2',
                            'flamingo1',
                            'frisbee',
                            'girl',
                            'glove',
                            'godfather',
                            'graduate',
                            'gymnastics1',
                            'gymnastics2',
                            'gymnastics3',
                            'hand',
                            'hand02',
                            'hand2',
                            'handball1',
                            'handball2',
                            'helicopter',
                            'iceskater1',
                            'iceskater2',
                            'lamb',
                            'leaves',
                            'marathon',
                            'matrix',
                            'monkey',
                            'motocross1',
                            'nature',
                            'polo',
                            'rabbit',
                            'rabbit2',
                            'road',
                            'rowing',
                            'shaking',
                            'singer2',
                            'singer3',
                            'soccer1',
                            'soccer2',
                            'soldier',
                            'surfing',
                            'tiger',
                            'wheel',
                            'wiper',
                            'zebrafish1']
        elif year == 22:
            sequence_list= ['agility',
                            'animal',
                            'ants1',
                            'bag',
                            'ball2',
                            'ball3',
                            'basketball',
                            'birds1',
                            'birds2',
                            'bolt1',
                            'book',
                            'bubble',
                            'butterfly',
                            'car1',
                            'conduction1',
                            'crabs1',
                            'dinosaur',
                            'diver',
                            'drone1',
                            'drone_across',
                            'fernando',
                            'fish1',
                            'fish2',
                            'flamingo1',
                            'frisbee',
                            'girl',
                            'graduate',
                            'gymnastics1',
                            'gymnastics2',
                            'gymnastics3',
                            'hand',
                            'hand2',
                            'handball1',
                            'handball2',
                            'helicopter',
                            'iceskater1',
                            'iceskater2',
                            'kangaroo',
                            'lamb',
                            'leaves',
                            'marathon',
                            'matrix',
                            'monkey',
                            'motocross1',
                            'nature',
                            'polo',
                            'rabbit',
                            'rabbit2',
                            'rowing',
                            'shaking',
                            'singer2',
                            'singer3',
                            'snake',
                            'soccer1',
                            'soccer2',
                            'soldier',
                            'surfing',
                            'tennis',
                            'tiger',
                            'wheel',
                            'wiper',
                            'zebrafish1']

        else:
            raise NotImplementedError

        return sequence_list


def parse(string):
    """
    parse string to the appropriate region format and return region object
    """
    from vot.region.shapes import Rectangle, Polygon, Mask


    if string[0] == 'm':
        # input is a mask - decode it
        m_, offset_, region = create_mask_from_string(string[1:].split(','))
        # return Mask(m_, offset=offset_)
        return region
    else:
        # input is not a mask - check if special, rectangle or polygon
        raise NotImplementedError
    print('Unknown region format.')
    return None


def read_file(fp: Union[str, TextIO]):
    if isinstance(fp, str):
        with open(fp) as file:
            lines = file.readlines()
    else:
        lines = fp.readlines()

    regions = []
    # iterate over all lines in the file
    for i, line in enumerate(lines):
        regions.append(parse(line.strip()))
    return regions


def create_mask_from_string(mask_encoding):
    """
    mask_encoding: a string in the following format: x0, y0, w, h, RLE
    output: mask, offset
    mask: 2-D binary mask, size defined in the mask encoding
    offset: (x, y) offset of the mask in the image coordinates
    """
    elements = [int(el) for el in mask_encoding]
    tl_x, tl_y, region_w, region_h = elements[:4]
    rle = np.array([el for el in elements[4:]], dtype=np.int32)

    # create mask from RLE within target region
    mask = rle_to_mask(rle, region_w, region_h)
    region = [tl_x, tl_y, region_w, region_h]

    return mask, (tl_x, tl_y), region

@jit(nopython=True)
def rle_to_mask(rle, width, height):
    """
    rle: input rle mask encoding
    each evenly-indexed element represents number of consecutive 0s
    each oddly indexed element represents number of consecutive 1s
    width and height are dimensions of the mask
    output: 2-D binary mask
    """
    # allocate list of zeros
    v = [0] * (width * height)

    # set id of the last different element to the beginning of the vector
    idx_ = 0
    for i in range(len(rle)):
        if i % 2 != 0:
            # write as many 1s as RLE says (zeros are already in the vector)
            for j in range(rle[i]):
                v[idx_+j] = 1
        idx_ += rle[i]