tracker.py 10.8 KB
Newer Older
bailuo's avatar
init  
bailuo committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
import importlib
import os
from collections import OrderedDict
from lib.test.evaluation.environment import env_settings
import time
import cv2 as cv

from lib.utils.lmdb_utils import decode_img
from pathlib import Path
import numpy as np


def trackerlist(name: str, parameter_name: str, dataset_name: str, run_ids = None, display_name: str = None,
                result_only=False):
    """Generate list of trackers.
    args:
        name: Name of tracking method.
        parameter_name: Name of parameter file.
        run_ids: A single or list of run_ids.
        display_name: Name to be displayed in the result plots.
    """
    if run_ids is None or isinstance(run_ids, int):
        run_ids = [run_ids]
    return [Tracker(name, parameter_name, dataset_name, run_id, display_name, result_only) for run_id in run_ids]


class Tracker:
    """Wraps the tracker for evaluation and running purposes.
    args:
        name: Name of tracking method.
        parameter_name: Name of parameter file.
        run_id: The run id.
        display_name: Name to be displayed in the result plots.
    """

    def __init__(self, name: str, parameter_name: str, dataset_name: str, run_id: int = None, display_name: str = None,
                 result_only=False):
        assert run_id is None or isinstance(run_id, int)

        self.name = name
        self.parameter_name = parameter_name
        self.dataset_name = dataset_name
        self.run_id = run_id
        self.display_name = display_name

        env = env_settings()
        if self.run_id is None:
            self.results_dir = '{}/{}/{}'.format(env.results_path, self.name, self.parameter_name)
        else:
            self.results_dir = '{}/{}/{}_{:03d}'.format(env.results_path, self.name, self.parameter_name, self.run_id)
        if result_only:
            self.results_dir = '{}/{}'.format(env.results_path, self.name)

        tracker_module_abspath = os.path.abspath(os.path.join(os.path.dirname(__file__),
                                                              '..', 'tracker', '%s.py' % self.name))
        if os.path.isfile(tracker_module_abspath):
            tracker_module = importlib.import_module('lib.test.tracker.{}'.format(self.name))
            self.tracker_class = tracker_module.get_tracker_class()
        else:
            self.tracker_class = None

    def create_tracker(self, params):
        tracker = self.tracker_class(params, self.dataset_name)
        return tracker

    def run_sequence(self, seq, debug=None):
        """Run tracker on sequence.
        args:
            seq: Sequence to run the tracker on.
            visualization: Set visualization flag (None means default value specified in the parameters).
            debug: Set debug level (None means default value specified in the parameters).
            multiobj_mode: Which mode to use for multiple objects.
        """
        params = self.get_parameters()

        debug_ = debug
        if debug is None:
            debug_ = getattr(params, 'debug', 0)

        params.debug = debug_

        # Get init information
        init_info = seq.init_info()

        tracker = self.create_tracker(params)

        output = self._track_sequence(tracker, seq, init_info)
        return output

    def _track_sequence(self, tracker, seq, init_info):
        # Define outputs
        # Each field in output is a list containing tracker prediction for each frame.

        # In case of single object tracking mode:
        # target_bbox[i] is the predicted bounding box for frame i
        # time[i] is the processing time for frame i

        # In case of multi object tracking mode:
        # target_bbox[i] is an OrderedDict, where target_bbox[i][obj_id] is the predicted box for target obj_id in
        # frame i
        # time[i] is either the processing time for frame i, or an OrderedDict containing processing times for each
        # object in frame i

        output = {'target_bbox': [],
                  'time': []}
        if tracker.params.save_all_boxes:
            output['all_boxes'] = []
            output['all_scores'] = []

        def _store_outputs(tracker_out: dict, defaults=None):
            defaults = {} if defaults is None else defaults
            for key in output.keys():
                val = tracker_out.get(key, defaults.get(key, None))
                if key in tracker_out or val is not None:
                    output[key].append(val)

        # Initialize
        image = self._read_image(seq.frames[0])

        start_time = time.time()
        out = tracker.initialize(image, init_info)
        if out is None:
            out = {}

        prev_output = OrderedDict(out)
        init_default = {'target_bbox': init_info.get('init_bbox'),
                        'time': time.time() - start_time}
        if tracker.params.save_all_boxes:
            init_default['all_boxes'] = out['all_boxes']
            init_default['all_scores'] = out['all_scores']

        _store_outputs(out, init_default)

        for frame_num, frame_path in enumerate(seq.frames[1:], start=1):
            image = self._read_image(frame_path)

            start_time = time.time()

            info = seq.frame_info(frame_num)
            info['previous_output'] = prev_output

            if len(seq.ground_truth_rect) > 1:
                info['gt_bbox'] = seq.ground_truth_rect[frame_num]
            out = tracker.track(image, info)
            prev_output = OrderedDict(out)
            _store_outputs(out, {'time': time.time() - start_time})

        for key in ['target_bbox', 'all_boxes', 'all_scores']:
            if key in output and len(output[key]) <= 1:
                output.pop(key)

        return output

    def run_video(self, videofilepath, optional_box=None, debug=None, visdom_info=None, save_results=False):
        """Run the tracker with the vieofile.
        args:
            debug: Debug level.
        """

        params = self.get_parameters()

        debug_ = debug
        if debug is None:
            debug_ = getattr(params, 'debug', 0)
        params.debug = debug_

        params.tracker_name = self.name
        params.param_name = self.parameter_name
        # self._init_visdom(visdom_info, debug_)

        multiobj_mode = getattr(params, 'multiobj_mode', getattr(self.tracker_class, 'multiobj_mode', 'default'))

        if multiobj_mode == 'default':
            tracker = self.create_tracker(params)

        elif multiobj_mode == 'parallel':
            tracker = MultiObjectWrapper(self.tracker_class, params, self.visdom, fast_load=True)
        else:
            raise ValueError('Unknown multi object mode {}'.format(multiobj_mode))

        assert os.path.isfile(videofilepath), "Invalid param {}".format(videofilepath)
        ", videofilepath must be a valid videofile"

        output_boxes = []

        cap = cv.VideoCapture(videofilepath)
        display_name = 'Display: ' + tracker.params.tracker_name
        cv.namedWindow(display_name, cv.WINDOW_NORMAL | cv.WINDOW_KEEPRATIO)
        cv.resizeWindow(display_name, 960, 720)
        success, frame = cap.read()
        cv.imshow(display_name, frame)

        def _build_init_info(box):
            return {'init_bbox': box}

        if success is not True:
            print("Read frame from {} failed.".format(videofilepath))
            exit(-1)
        if optional_box is not None:
            assert isinstance(optional_box, (list, tuple))
            assert len(optional_box) == 4, "valid box's foramt is [x,y,w,h]"
            tracker.initialize(frame, _build_init_info(optional_box))
            output_boxes.append(optional_box)
        else:
            while True:
                # cv.waitKey()
                frame_disp = frame.copy()

                cv.putText(frame_disp, 'Select target ROI and press ENTER', (20, 30), cv.FONT_HERSHEY_COMPLEX_SMALL,
                           1.5, (0, 0, 0), 1)

                x, y, w, h = cv.selectROI(display_name, frame_disp, fromCenter=False)
                init_state = [x, y, w, h]
                tracker.initialize(frame, _build_init_info(init_state))
                output_boxes.append(init_state)
                break

        while True:
            ret, frame = cap.read()

            if frame is None:
                break

            frame_disp = frame.copy()

            # Draw box
            out = tracker.track(frame)
            state = [int(s) for s in out['target_bbox']]
            output_boxes.append(state)

            cv.rectangle(frame_disp, (state[0], state[1]), (state[2] + state[0], state[3] + state[1]),
                         (0, 255, 0), 5)

            font_color = (0, 0, 0)
            cv.putText(frame_disp, 'Tracking!', (20, 30), cv.FONT_HERSHEY_COMPLEX_SMALL, 1,
                       font_color, 1)
            cv.putText(frame_disp, 'Press r to reset', (20, 55), cv.FONT_HERSHEY_COMPLEX_SMALL, 1,
                       font_color, 1)
            cv.putText(frame_disp, 'Press q to quit', (20, 80), cv.FONT_HERSHEY_COMPLEX_SMALL, 1,
                       font_color, 1)

            # Display the resulting frame
            cv.imshow(display_name, frame_disp)
            key = cv.waitKey(1)
            if key == ord('q'):
                break
            elif key == ord('r'):
                ret, frame = cap.read()
                frame_disp = frame.copy()

                cv.putText(frame_disp, 'Select target ROI and press ENTER', (20, 30), cv.FONT_HERSHEY_COMPLEX_SMALL, 1.5,
                           (0, 0, 0), 1)

                cv.imshow(display_name, frame_disp)
                x, y, w, h = cv.selectROI(display_name, frame_disp, fromCenter=False)
                init_state = [x, y, w, h]
                tracker.initialize(frame, _build_init_info(init_state))
                output_boxes.append(init_state)

        # When everything done, release the capture
        cap.release()
        cv.destroyAllWindows()

        if save_results:
            if not os.path.exists(self.results_dir):
                os.makedirs(self.results_dir)
            video_name = Path(videofilepath).stem
            base_results_path = os.path.join(self.results_dir, 'video_{}'.format(video_name))

            tracked_bb = np.array(output_boxes).astype(int)
            bbox_file = '{}.txt'.format(base_results_path)
            np.savetxt(bbox_file, tracked_bb, delimiter='\t', fmt='%d')


    def get_parameters(self):
        """Get parameters."""
        param_module = importlib.import_module('lib.test.parameter.{}'.format(self.name))
        params = param_module.parameters(self.parameter_name)
        return params

    def _read_image(self, image_file: str):
        if isinstance(image_file, str):
            im = cv.imread(image_file)
            return cv.cvtColor(im, cv.COLOR_BGR2RGB)
        elif isinstance(image_file, list) and len(image_file) == 2:
            return decode_img(image_file[0], image_file[1])
        else:
            raise ValueError("type of image_file should be str or list")