extract_results.py 9.64 KB
Newer Older
bailuo's avatar
init  
bailuo committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import os
import os.path as osp
import sys
import numpy as np
from lib.test.utils.load_text import load_text
import torch
import pickle
from tqdm import tqdm

env_path = os.path.join(os.path.dirname(__file__), '../../..')
if env_path not in sys.path:
    sys.path.append(env_path)

from lib.test.evaluation.environment import env_settings


def calc_err_center(pred_bb, anno_bb, normalized=False):
    pred_center = pred_bb[:, :2] + 0.5 * (pred_bb[:, 2:] - 1.0)
    anno_center = anno_bb[:, :2] + 0.5 * (anno_bb[:, 2:] - 1.0)

    if normalized:
        pred_center = pred_center / anno_bb[:, 2:]
        anno_center = anno_center / anno_bb[:, 2:]

    err_center = ((pred_center - anno_center)**2).sum(1).sqrt()
    return err_center


def calc_iou_overlap(pred_bb, anno_bb):
    tl = torch.max(pred_bb[:, :2], anno_bb[:, :2])
    br = torch.min(pred_bb[:, :2] + pred_bb[:, 2:] - 1.0, anno_bb[:, :2] + anno_bb[:, 2:] - 1.0)
    sz = (br - tl + 1.0).clamp(0)

    # Area
    intersection = sz.prod(dim=1)
    union = pred_bb[:, 2:].prod(dim=1) + anno_bb[:, 2:].prod(dim=1) - intersection

    return intersection / union


def calc_seq_err_robust(pred_bb, anno_bb, dataset, target_visible=None):
    pred_bb = pred_bb.clone()

    # Check if invalid values are present
    if torch.isnan(pred_bb).any() or (pred_bb[:, 2:] < 0.0).any():
        raise Exception('Error: Invalid results')

    if torch.isnan(anno_bb).any():
        if dataset == 'uav':
            pass
        else:
            raise Exception('Warning: NaNs in annotation')

    if (pred_bb[:, 2:] == 0.0).any():
        for i in range(1, pred_bb.shape[0]):
            if i >= anno_bb.shape[0]:
                continue
            if (pred_bb[i, 2:] == 0.0).any() and not torch.isnan(anno_bb[i, :]).any():
                pred_bb[i, :] = pred_bb[i-1, :]

    if pred_bb.shape[0] != anno_bb.shape[0]:
        if dataset == 'lasot':
            if pred_bb.shape[0] > anno_bb.shape[0]:
                # For monkey-17, there is a mismatch for some trackers.
                pred_bb = pred_bb[:anno_bb.shape[0], :]
            else:
                raise Exception('Mis-match in tracker prediction and GT lengths')
        else:
            # print('Warning: Mis-match in tracker prediction and GT lengths')
            if pred_bb.shape[0] > anno_bb.shape[0]:
                pred_bb = pred_bb[:anno_bb.shape[0], :]
            else:
                pad = torch.zeros((anno_bb.shape[0] - pred_bb.shape[0], 4)).type_as(pred_bb)
                pred_bb = torch.cat((pred_bb, pad), dim=0)

    pred_bb[0, :] = anno_bb[0, :]

    if target_visible is not None:
        target_visible = target_visible.bool()
        valid = ((anno_bb[:, 2:] > 0.0).sum(1) == 2) & target_visible
    else:
        valid = ((anno_bb[:, 2:] > 0.0).sum(1) == 2)

    err_center = calc_err_center(pred_bb, anno_bb)
    err_center_normalized = calc_err_center(pred_bb, anno_bb, normalized=True)
    err_overlap = calc_iou_overlap(pred_bb, anno_bb)

    # handle invalid anno cases
    if dataset in ['uav']:
        err_center[~valid] = -1.0
    else:
        err_center[~valid] = float("Inf")
    err_center_normalized[~valid] = -1.0
    err_overlap[~valid] = -1.0

    if dataset == 'lasot':
        err_center_normalized[~target_visible] = float("Inf")
        err_center[~target_visible] = float("Inf")

    if torch.isnan(err_overlap).any():
        raise Exception('Nans in calculated overlap')
    return err_overlap, err_center, err_center_normalized, valid


def extract_results(trackers, dataset, report_name, skip_missing_seq=False, plot_bin_gap=0.05,
                    exclude_invalid_frames=False):
    settings = env_settings()
    eps = 1e-16

    result_plot_path = os.path.join(settings.result_plot_path, report_name)

    if not os.path.exists(result_plot_path):
        os.makedirs(result_plot_path)

    threshold_set_overlap = torch.arange(0.0, 1.0 + plot_bin_gap, plot_bin_gap, dtype=torch.float64)
    threshold_set_center = torch.arange(0, 51, dtype=torch.float64)
    threshold_set_center_norm = torch.arange(0, 51, dtype=torch.float64) / 100.0

    avg_overlap_all = torch.zeros((len(dataset), len(trackers)), dtype=torch.float64)
    ave_success_rate_plot_overlap = torch.zeros((len(dataset), len(trackers), threshold_set_overlap.numel()),
                                                dtype=torch.float32)
    ave_success_rate_plot_center = torch.zeros((len(dataset), len(trackers), threshold_set_center.numel()),
                                               dtype=torch.float32)
    ave_success_rate_plot_center_norm = torch.zeros((len(dataset), len(trackers), threshold_set_center.numel()),
                                                    dtype=torch.float32)

    from collections import defaultdict
    # default dict of default dict of list
    

    valid_sequence = torch.ones(len(dataset), dtype=torch.uint8)

    for seq_id, seq in enumerate(tqdm(dataset)):
        frame_success_rate_plot_overlap = defaultdict(lambda: defaultdict(list))    
        frame_success_rate_plot_center = defaultdict(lambda: defaultdict(list))
        frame_success_rate_plot_center_norm = defaultdict(lambda: defaultdict(list))
        # Load anno
        anno_bb = torch.tensor(seq.ground_truth_rect)
        target_visible = torch.tensor(seq.target_visible, dtype=torch.uint8) if seq.target_visible is not None else None
        for trk_id, trk in enumerate(trackers):
            # Load results
            base_results_path = '{}/{}'.format(trk.results_dir, seq.name)
            results_path = '{}.txt'.format(base_results_path)

            if os.path.isfile(results_path):
                pred_bb = torch.tensor(load_text(str(results_path), delimiter=('\t', ','), dtype=np.float64))
            else:
                if skip_missing_seq:
                    valid_sequence[seq_id] = 0
                    break
                else:
                    raise Exception('Result not found. {}'.format(results_path))

            # Calculate measures
            err_overlap, err_center, err_center_normalized, valid_frame = calc_seq_err_robust(
                pred_bb, anno_bb, seq.dataset, target_visible)

            avg_overlap_all[seq_id, trk_id] = err_overlap[valid_frame].mean()

            if exclude_invalid_frames:
                seq_length = valid_frame.long().sum()
            else:
                seq_length = anno_bb.shape[0]

            if seq_length <= 0:
                raise Exception('Seq length zero')

            ave_success_rate_plot_overlap[seq_id, trk_id, :] = (err_overlap.view(-1, 1) > threshold_set_overlap.view(1, -1)).sum(0).float() / seq_length
            ave_success_rate_plot_center[seq_id, trk_id, :] = (err_center.view(-1, 1) <= threshold_set_center.view(1, -1)).sum(0).float() / seq_length
            ave_success_rate_plot_center_norm[seq_id, trk_id, :] = (err_center_normalized.view(-1, 1) <= threshold_set_center_norm.view(1, -1)).sum(0).float() / seq_length

            # for frame_id in range(seq_length):
            #     frame_success_rate_plot_overlap[trk_id][frame_id].append((err_overlap[frame_id]).item())
            #     frame_success_rate_plot_center[trk_id][frame_id].append((err_center[frame_id]).item())
            #     frame_success_rate_plot_center_norm[trk_id][frame_id].append((err_center_normalized[frame_id] < 0.2).item())

        # output_folder = "../cvpr2025/per_frame_success_rate"
        # os.makedirs(output_folder, exist_ok=True)
        # with open(osp.join(output_folder, f"{seq.name}.txt"), 'w') as f:
        #     for frame_id in range(seq_length):
        #         suc_score = frame_success_rate_plot_overlap[trk_id][frame_id][0]
        #         f.write(f"{suc_score}\n")

    # # plot the average success rate, center normalized for each tracker 
    # # y axis: success rate
    # # x axis: frame number
    # # different color for each tracker
    # # save the plot as a figure
    # import matplotlib.pyplot as plt
    # plt.figure(figsize=(10, 6))
    # for trk_id, trk in enumerate(trackers):
    #     list_to_plot = [np.mean(frame_success_rate_plot_overlap[trk_id][frame_id]) for frame_id in range(2000)]
    #     # smooth the curve; window size = 10
    #     smooth_list_to_plot = np.convolve(list_to_plot, np.ones((10,))/10, mode='valid')
    #     # the smooth curve and non smooth curve have the same label
    #     plt.plot(smooth_list_to_plot, label=trk.display_name, alpha=1)
    # plt.xlabel('Frame Number')
    # plt.ylabel('Success Rate')
    # plt.title('Average Success Rate Over Frames')
    # plt.legend()
    # plt.grid(True)
    # plt.savefig('average_success_rate_plot_overlap.png')
    # plt.close()


    print('\n\nComputed results over {} / {} sequences'.format(valid_sequence.long().sum().item(), valid_sequence.shape[0]))

    # Prepare dictionary for saving data
    seq_names = [s.name for s in dataset]
    tracker_names = [{'name': t.name, 'param': t.parameter_name, 'run_id': t.run_id, 'disp_name': t.display_name}
                     for t in trackers]

    eval_data = {'sequences': seq_names, 'trackers': tracker_names,
                 'valid_sequence': valid_sequence.tolist(),
                 'ave_success_rate_plot_overlap': ave_success_rate_plot_overlap.tolist(),
                 'ave_success_rate_plot_center': ave_success_rate_plot_center.tolist(),
                 'ave_success_rate_plot_center_norm': ave_success_rate_plot_center_norm.tolist(),
                 'avg_overlap_all': avg_overlap_all.tolist(),
                 'threshold_set_overlap': threshold_set_overlap.tolist(),
                 'threshold_set_center': threshold_set_center.tolist(),
                 'threshold_set_center_norm': threshold_set_center_norm.tolist()}

    with open(result_plot_path + '/eval_data.pkl', 'wb') as fh:
        pickle.dump(eval_data, fh)

    return eval_data