"vscode:/vscode.git/clone" did not exist on "a39ab4dd24402d023ec723690ceebd30a35796eb"
Commit 46260e34 authored by suily's avatar suily
Browse files

Initial commit

parents
Pipeline #2006 failed with stages
in 0 seconds
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
"""
COCO evaluator that works in distributed mode.
Mostly copy-paste from https://github.com/pytorch/vision/blob/edfd5a7/references/detection/coco_eval.py
The difference is that there is less copy-pasting from pycocotools
in the end of the file, as python3 can suppress prints with contextlib
"""
import os
import contextlib
import copy
import numpy as np
import torch
from pycocotools.cocoeval import COCOeval
from pycocotools.coco import COCO
import pycocotools.mask as mask_util
from src.misc import dist
__all__ = ['CocoEvaluator',]
class CocoEvaluator(object):
def __init__(self, coco_gt, iou_types):
assert isinstance(iou_types, (list, tuple))
coco_gt = copy.deepcopy(coco_gt)
self.coco_gt = coco_gt
self.iou_types = iou_types
self.coco_eval = {}
for iou_type in iou_types:
self.coco_eval[iou_type] = COCOeval(coco_gt, iouType=iou_type)
self.img_ids = []
self.eval_imgs = {k: [] for k in iou_types}
def update(self, predictions):
img_ids = list(np.unique(list(predictions.keys())))
self.img_ids.extend(img_ids)
for iou_type in self.iou_types:
results = self.prepare(predictions, iou_type)
# suppress pycocotools prints
with open(os.devnull, 'w') as devnull:
with contextlib.redirect_stdout(devnull):
coco_dt = COCO.loadRes(self.coco_gt, results) if results else COCO()
coco_eval = self.coco_eval[iou_type]
coco_eval.cocoDt = coco_dt
coco_eval.params.imgIds = list(img_ids)
img_ids, eval_imgs = evaluate(coco_eval)
self.eval_imgs[iou_type].append(eval_imgs)
def synchronize_between_processes(self):
for iou_type in self.iou_types:
self.eval_imgs[iou_type] = np.concatenate(self.eval_imgs[iou_type], 2)
create_common_coco_eval(self.coco_eval[iou_type], self.img_ids, self.eval_imgs[iou_type])
def accumulate(self):
for coco_eval in self.coco_eval.values():
coco_eval.accumulate()
def summarize(self):
for iou_type, coco_eval in self.coco_eval.items():
print("IoU metric: {}".format(iou_type))
coco_eval.summarize()
def prepare(self, predictions, iou_type):
if iou_type == "bbox":
return self.prepare_for_coco_detection(predictions)
elif iou_type == "segm":
return self.prepare_for_coco_segmentation(predictions)
elif iou_type == "keypoints":
return self.prepare_for_coco_keypoint(predictions)
else:
raise ValueError("Unknown iou type {}".format(iou_type))
def prepare_for_coco_detection(self, predictions):
coco_results = []
for original_id, prediction in predictions.items():
if len(prediction) == 0:
continue
boxes = prediction["boxes"]
boxes = convert_to_xywh(boxes).tolist()
scores = prediction["scores"].tolist()
labels = prediction["labels"].tolist()
coco_results.extend(
[
{
"image_id": original_id,
"category_id": labels[k],
"bbox": box,
"score": scores[k],
}
for k, box in enumerate(boxes)
]
)
return coco_results
def prepare_for_coco_segmentation(self, predictions):
coco_results = []
for original_id, prediction in predictions.items():
if len(prediction) == 0:
continue
scores = prediction["scores"]
labels = prediction["labels"]
masks = prediction["masks"]
masks = masks > 0.5
scores = prediction["scores"].tolist()
labels = prediction["labels"].tolist()
rles = [
mask_util.encode(np.array(mask[0, :, :, np.newaxis], dtype=np.uint8, order="F"))[0]
for mask in masks
]
for rle in rles:
rle["counts"] = rle["counts"].decode("utf-8")
coco_results.extend(
[
{
"image_id": original_id,
"category_id": labels[k],
"segmentation": rle,
"score": scores[k],
}
for k, rle in enumerate(rles)
]
)
return coco_results
def prepare_for_coco_keypoint(self, predictions):
coco_results = []
for original_id, prediction in predictions.items():
if len(prediction) == 0:
continue
boxes = prediction["boxes"]
boxes = convert_to_xywh(boxes).tolist()
scores = prediction["scores"].tolist()
labels = prediction["labels"].tolist()
keypoints = prediction["keypoints"]
keypoints = keypoints.flatten(start_dim=1).tolist()
coco_results.extend(
[
{
"image_id": original_id,
"category_id": labels[k],
'keypoints': keypoint,
"score": scores[k],
}
for k, keypoint in enumerate(keypoints)
]
)
return coco_results
def convert_to_xywh(boxes):
xmin, ymin, xmax, ymax = boxes.unbind(1)
return torch.stack((xmin, ymin, xmax - xmin, ymax - ymin), dim=1)
def merge(img_ids, eval_imgs):
all_img_ids = dist.all_gather(img_ids)
all_eval_imgs = dist.all_gather(eval_imgs)
merged_img_ids = []
for p in all_img_ids:
merged_img_ids.extend(p)
merged_eval_imgs = []
for p in all_eval_imgs:
merged_eval_imgs.append(p)
merged_img_ids = np.array(merged_img_ids)
merged_eval_imgs = np.concatenate(merged_eval_imgs, 2)
# keep only unique (and in sorted order) images
merged_img_ids, idx = np.unique(merged_img_ids, return_index=True)
merged_eval_imgs = merged_eval_imgs[..., idx]
return merged_img_ids, merged_eval_imgs
def create_common_coco_eval(coco_eval, img_ids, eval_imgs):
img_ids, eval_imgs = merge(img_ids, eval_imgs)
img_ids = list(img_ids)
eval_imgs = list(eval_imgs.flatten())
coco_eval.evalImgs = eval_imgs
coco_eval.params.imgIds = img_ids
coco_eval._paramsEval = copy.deepcopy(coco_eval.params)
#################################################################
# From pycocotools, just removed the prints and fixed
# a Python3 bug about unicode not defined
#################################################################
# import io
# from contextlib import redirect_stdout
# def evaluate(imgs):
# with redirect_stdout(io.StringIO()):
# imgs.evaluate()
# return imgs.params.imgIds, np.asarray(imgs.evalImgs).reshape(-1, len(imgs.params.areaRng), len(imgs.params.imgIds))
def evaluate(self):
'''
Run per image evaluation on given images and store results (a list of dict) in self.evalImgs
:return: None
'''
# tic = time.time()
# print('Running per image evaluation...')
p = self.params
# add backward compatibility if useSegm is specified in params
if p.useSegm is not None:
p.iouType = 'segm' if p.useSegm == 1 else 'bbox'
print('useSegm (deprecated) is not None. Running {} evaluation'.format(p.iouType))
# print('Evaluate annotation type *{}*'.format(p.iouType))
p.imgIds = list(np.unique(p.imgIds))
if p.useCats:
p.catIds = list(np.unique(p.catIds))
p.maxDets = sorted(p.maxDets)
self.params = p
self._prepare()
# loop through images, area range, max detection number
catIds = p.catIds if p.useCats else [-1]
if p.iouType == 'segm' or p.iouType == 'bbox':
computeIoU = self.computeIoU
elif p.iouType == 'keypoints':
computeIoU = self.computeOks
self.ious = {
(imgId, catId): computeIoU(imgId, catId)
for imgId in p.imgIds
for catId in catIds}
evaluateImg = self.evaluateImg
maxDet = p.maxDets[-1]
evalImgs = [
evaluateImg(imgId, catId, areaRng, maxDet)
for catId in catIds
for areaRng in p.areaRng
for imgId in p.imgIds
]
# this is NOT in the pycocotools code, but could be done outside
evalImgs = np.asarray(evalImgs).reshape(len(catIds), len(p.areaRng), len(p.imgIds))
self._paramsEval = copy.deepcopy(self.params)
# toc = time.time()
# print('DONE (t={:0.2f}s).'.format(toc-tic))
return p.imgIds, evalImgs
#################################################################
# end of straight copy from pycocotools, just removing the prints
#################################################################
import os
import torch
import torch.utils.data
import torchvision
from pycocotools import mask as coco_mask
from pycocotools.coco import COCO
def convert_coco_poly_to_mask(segmentations, height, width):
masks = []
for polygons in segmentations:
rles = coco_mask.frPyObjects(polygons, height, width)
mask = coco_mask.decode(rles)
if len(mask.shape) < 3:
mask = mask[..., None]
mask = torch.as_tensor(mask, dtype=torch.uint8)
mask = mask.any(dim=2)
masks.append(mask)
if masks:
masks = torch.stack(masks, dim=0)
else:
masks = torch.zeros((0, height, width), dtype=torch.uint8)
return masks
class ConvertCocoPolysToMask:
def __call__(self, image, target):
w, h = image.size
image_id = target["image_id"]
anno = target["annotations"]
anno = [obj for obj in anno if obj["iscrowd"] == 0]
boxes = [obj["bbox"] for obj in anno]
# guard against no boxes via resizing
boxes = torch.as_tensor(boxes, dtype=torch.float32).reshape(-1, 4)
boxes[:, 2:] += boxes[:, :2]
boxes[:, 0::2].clamp_(min=0, max=w)
boxes[:, 1::2].clamp_(min=0, max=h)
classes = [obj["category_id"] for obj in anno]
classes = torch.tensor(classes, dtype=torch.int64)
segmentations = [obj["segmentation"] for obj in anno]
masks = convert_coco_poly_to_mask(segmentations, h, w)
keypoints = None
if anno and "keypoints" in anno[0]:
keypoints = [obj["keypoints"] for obj in anno]
keypoints = torch.as_tensor(keypoints, dtype=torch.float32)
num_keypoints = keypoints.shape[0]
if num_keypoints:
keypoints = keypoints.view(num_keypoints, -1, 3)
keep = (boxes[:, 3] > boxes[:, 1]) & (boxes[:, 2] > boxes[:, 0])
boxes = boxes[keep]
classes = classes[keep]
masks = masks[keep]
if keypoints is not None:
keypoints = keypoints[keep]
target = {}
target["boxes"] = boxes
target["labels"] = classes
target["masks"] = masks
target["image_id"] = image_id
if keypoints is not None:
target["keypoints"] = keypoints
# for conversion to coco api
area = torch.tensor([obj["area"] for obj in anno])
iscrowd = torch.tensor([obj["iscrowd"] for obj in anno])
target["area"] = area
target["iscrowd"] = iscrowd
return image, target
def _coco_remove_images_without_annotations(dataset, cat_list=None):
def _has_only_empty_bbox(anno):
return all(any(o <= 1 for o in obj["bbox"][2:]) for obj in anno)
def _count_visible_keypoints(anno):
return sum(sum(1 for v in ann["keypoints"][2::3] if v > 0) for ann in anno)
min_keypoints_per_image = 10
def _has_valid_annotation(anno):
# if it's empty, there is no annotation
if len(anno) == 0:
return False
# if all boxes have close to zero area, there is no annotation
if _has_only_empty_bbox(anno):
return False
# keypoints task have a slight different criteria for considering
# if an annotation is valid
if "keypoints" not in anno[0]:
return True
# for keypoint detection tasks, only consider valid images those
# containing at least min_keypoints_per_image
if _count_visible_keypoints(anno) >= min_keypoints_per_image:
return True
return False
ids = []
for ds_idx, img_id in enumerate(dataset.ids):
ann_ids = dataset.coco.getAnnIds(imgIds=img_id, iscrowd=None)
anno = dataset.coco.loadAnns(ann_ids)
if cat_list:
anno = [obj for obj in anno if obj["category_id"] in cat_list]
if _has_valid_annotation(anno):
ids.append(ds_idx)
dataset = torch.utils.data.Subset(dataset, ids)
return dataset
def convert_to_coco_api(ds):
coco_ds = COCO()
# annotation IDs need to start at 1, not 0, see torchvision issue #1530
ann_id = 1
dataset = {"images": [], "categories": [], "annotations": []}
categories = set()
for img_idx in range(len(ds)):
# find better way to get target
# targets = ds.get_annotations(img_idx)
img, targets = ds[img_idx]
image_id = targets["image_id"].item()
img_dict = {}
img_dict["id"] = image_id
img_dict["height"] = img.shape[-2]
img_dict["width"] = img.shape[-1]
dataset["images"].append(img_dict)
bboxes = targets["boxes"].clone()
bboxes[:, 2:] -= bboxes[:, :2]
bboxes = bboxes.tolist()
labels = targets["labels"].tolist()
areas = targets["area"].tolist()
iscrowd = targets["iscrowd"].tolist()
if "masks" in targets:
masks = targets["masks"]
# make masks Fortran contiguous for coco_mask
masks = masks.permute(0, 2, 1).contiguous().permute(0, 2, 1)
if "keypoints" in targets:
keypoints = targets["keypoints"]
keypoints = keypoints.reshape(keypoints.shape[0], -1).tolist()
num_objs = len(bboxes)
for i in range(num_objs):
ann = {}
ann["image_id"] = image_id
ann["bbox"] = bboxes[i]
ann["category_id"] = labels[i]
categories.add(labels[i])
ann["area"] = areas[i]
ann["iscrowd"] = iscrowd[i]
ann["id"] = ann_id
if "masks" in targets:
ann["segmentation"] = coco_mask.encode(masks[i].numpy())
if "keypoints" in targets:
ann["keypoints"] = keypoints[i]
ann["num_keypoints"] = sum(k != 0 for k in keypoints[i][2::3])
dataset["annotations"].append(ann)
ann_id += 1
dataset["categories"] = [{"id": i} for i in sorted(categories)]
coco_ds.dataset = dataset
coco_ds.createIndex()
return coco_ds
def get_coco_api_from_dataset(dataset):
# FIXME: This is... awful?
for _ in range(10):
if isinstance(dataset, torchvision.datasets.CocoDetection):
break
if isinstance(dataset, torch.utils.data.Subset):
dataset = dataset.dataset
if isinstance(dataset, torchvision.datasets.CocoDetection):
return dataset.coco
return convert_to_coco_api(dataset)
import torch
import torch.utils.data as data
from src.core import register
__all__ = ['DataLoader']
@register
class DataLoader(data.DataLoader):
__inject__ = ['dataset', 'collate_fn']
def __repr__(self) -> str:
format_string = self.__class__.__name__ + "("
for n in ['dataset', 'batch_size', 'num_workers', 'drop_last', 'collate_fn']:
format_string += "\n"
format_string += " {0}: {1}".format(n, getattr(self, n))
format_string += "\n)"
return format_string
@register
def default_collate_fn(items):
'''default collate_fn
'''
return torch.cat([x[0][None] for x in items], dim=0), [x[1] for x in items]
import torch
import torchvision.transforms.functional as F
from packaging import version
from typing import Optional, List
from torch import Tensor
# needed due to empty tensor bug in pytorch and torchvision 0.5
import torchvision
if version.parse(torchvision.__version__) < version.parse('0.7'):
from torchvision.ops import _new_empty_tensor
from torchvision.ops.misc import _output_size
def interpolate(input, size=None, scale_factor=None, mode="nearest", align_corners=None):
# type: (Tensor, Optional[List[int]], Optional[float], str, Optional[bool]) -> Tensor
"""
Equivalent to nn.functional.interpolate, but with support for empty batch sizes.
This will eventually be supported natively by PyTorch, and this
class can go away.
"""
if version.parse(torchvision.__version__) < version.parse('0.7'):
if input.numel() > 0:
return torch.nn.functional.interpolate(
input, size, scale_factor, mode, align_corners
)
output_shape = _output_size(2, input, size, scale_factor)
output_shape = list(input.shape[:-2]) + list(output_shape)
return _new_empty_tensor(input, output_shape)
else:
return torchvision.ops.misc.interpolate(input, size, scale_factor, mode, align_corners)
def crop(image, target, region):
cropped_image = F.crop(image, *region)
target = target.copy()
i, j, h, w = region
# should we do something wrt the original size?
target["size"] = torch.tensor([h, w])
fields = ["labels", "area", "iscrowd"]
if "boxes" in target:
boxes = target["boxes"]
max_size = torch.as_tensor([w, h], dtype=torch.float32)
cropped_boxes = boxes - torch.as_tensor([j, i, j, i])
cropped_boxes = torch.min(cropped_boxes.reshape(-1, 2, 2), max_size)
cropped_boxes = cropped_boxes.clamp(min=0)
area = (cropped_boxes[:, 1, :] - cropped_boxes[:, 0, :]).prod(dim=1)
target["boxes"] = cropped_boxes.reshape(-1, 4)
target["area"] = area
fields.append("boxes")
if "masks" in target:
# FIXME should we update the area here if there are no boxes?
target['masks'] = target['masks'][:, i:i + h, j:j + w]
fields.append("masks")
# remove elements for which the boxes or masks that have zero area
if "boxes" in target or "masks" in target:
# favor boxes selection when defining which elements to keep
# this is compatible with previous implementation
if "boxes" in target:
cropped_boxes = target['boxes'].reshape(-1, 2, 2)
keep = torch.all(cropped_boxes[:, 1, :] > cropped_boxes[:, 0, :], dim=1)
else:
keep = target['masks'].flatten(1).any(1)
for field in fields:
target[field] = target[field][keep]
return cropped_image, target
def hflip(image, target):
flipped_image = F.hflip(image)
w, h = image.size
target = target.copy()
if "boxes" in target:
boxes = target["boxes"]
boxes = boxes[:, [2, 1, 0, 3]] * torch.as_tensor([-1, 1, -1, 1]) + torch.as_tensor([w, 0, w, 0])
target["boxes"] = boxes
if "masks" in target:
target['masks'] = target['masks'].flip(-1)
return flipped_image, target
def resize(image, target, size, max_size=None):
# size can be min_size (scalar) or (w, h) tuple
def get_size_with_aspect_ratio(image_size, size, max_size=None):
w, h = image_size
if max_size is not None:
min_original_size = float(min((w, h)))
max_original_size = float(max((w, h)))
if max_original_size / min_original_size * size > max_size:
size = int(round(max_size * min_original_size / max_original_size))
if (w <= h and w == size) or (h <= w and h == size):
return (h, w)
if w < h:
ow = size
oh = int(size * h / w)
else:
oh = size
ow = int(size * w / h)
# r = min(size / min(h, w), max_size / max(h, w))
# ow = int(w * r)
# oh = int(h * r)
return (oh, ow)
def get_size(image_size, size, max_size=None):
if isinstance(size, (list, tuple)):
return size[::-1]
else:
return get_size_with_aspect_ratio(image_size, size, max_size)
size = get_size(image.size, size, max_size)
rescaled_image = F.resize(image, size)
if target is None:
return rescaled_image, None
ratios = tuple(float(s) / float(s_orig) for s, s_orig in zip(rescaled_image.size, image.size))
ratio_width, ratio_height = ratios
target = target.copy()
if "boxes" in target:
boxes = target["boxes"]
scaled_boxes = boxes * torch.as_tensor([ratio_width, ratio_height, ratio_width, ratio_height])
target["boxes"] = scaled_boxes
if "area" in target:
area = target["area"]
scaled_area = area * (ratio_width * ratio_height)
target["area"] = scaled_area
h, w = size
target["size"] = torch.tensor([h, w])
if "masks" in target:
target['masks'] = interpolate(
target['masks'][:, None].float(), size, mode="nearest")[:, 0] > 0.5
return rescaled_image, target
def pad(image, target, padding):
# assumes that we only pad on the bottom right corners
padded_image = F.pad(image, (0, 0, padding[0], padding[1]))
if target is None:
return padded_image, None
target = target.copy()
# should we do something wrt the original size?
target["size"] = torch.tensor(padded_image.size[::-1])
if "masks" in target:
target['masks'] = torch.nn.functional.pad(target['masks'], (0, padding[0], 0, padding[1]))
return padded_image, target
""""by lyuwenyu
"""
import torch
import torch.nn as nn
import torchvision
torchvision.disable_beta_transforms_warning()
# TODO:修改库:
# from torchvision import datapoints
from torchvision import tv_tensors
import torchvision.transforms.v2 as T
import torchvision.transforms.v2.functional as F
from PIL import Image
from typing import Any, Dict, List, Optional
from src.core import register, GLOBAL_CONFIG
__all__ = ['Compose', ]
RandomPhotometricDistort = register(T.RandomPhotometricDistort)
RandomZoomOut = register(T.RandomZoomOut)
# RandomIoUCrop = register(T.RandomIoUCrop)
RandomHorizontalFlip = register(T.RandomHorizontalFlip)
Resize = register(T.Resize)
# ToImageTensor = register(T.ToImageTensor)
ToImageTensor = register(T.ToImage) # TODO:修改
# ConvertDtype = register(T.ConvertDtype)
ConvertDtype = register(T.ConvertImageDtype) # TODO:修改
# SanitizeBoundingBox = register(T.SanitizeBoundingBox)
SanitizeBoundingBox = register(T.SanitizeBoundingBoxes) # TODO:修改
RandomCrop = register(T.RandomCrop)
Normalize = register(T.Normalize)
@register
class Compose(T.Compose):
def __init__(self, ops) -> None:
transforms = []
if ops is not None:
for op in ops:
if isinstance(op, dict):
name = op.pop('type')
transfom = getattr(GLOBAL_CONFIG[name]['_pymodule'], name)(**op)
transforms.append(transfom)
# op['type'] = name
elif isinstance(op, nn.Module):
transforms.append(op)
else:
raise ValueError('')
else:
transforms =[EmptyTransform(), ]
super().__init__(transforms=transforms)
@register
class EmptyTransform(T.Transform):
def __init__(self, ) -> None:
super().__init__()
def forward(self, *inputs):
inputs = inputs if len(inputs) > 1 else inputs[0]
return inputs
@register
class PadToSize(T.Pad):
# _transformed_types = (
# Image.Image,
# datapoints.Image,
# datapoints.Video,
# datapoints.Mask,
# datapoints.BoundingBox,
# )
_transformed_types = ( # TODO:修改
Image.Image,
tv_tensors.Image,
tv_tensors.Video,
tv_tensors.Mask,
tv_tensors.BoundingBoxes,
)
def _get_params(self, flat_inputs: List[Any]) -> Dict[str, Any]:
# sz = F.get_spatial_size(flat_inputs[0])
sz = F.get_image_size(flat_inputs[0]) # TODO:修改
h, w = self.spatial_size[0] - sz[0], self.spatial_size[1] - sz[1]
self.padding = [0, 0, w, h]
return dict(padding=self.padding)
def __init__(self, spatial_size, fill=0, padding_mode='constant') -> None:
if isinstance(spatial_size, int):
spatial_size = (spatial_size, spatial_size)
self.spatial_size = spatial_size
super().__init__(0, fill, padding_mode)
def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
fill = self._fill[type(inpt)]
padding = params['padding']
return F.pad(inpt, padding=padding, fill=fill, padding_mode=self.padding_mode) # type: ignore[arg-type]
def __call__(self, *inputs: Any) -> Any:
outputs = super().forward(*inputs)
if len(outputs) > 1 and isinstance(outputs[1], dict):
outputs[1]['padding'] = torch.tensor(self.padding)
return outputs
@register
class RandomIoUCrop(T.RandomIoUCrop):
def __init__(self, min_scale: float = 0.3, max_scale: float = 1, min_aspect_ratio: float = 0.5, max_aspect_ratio: float = 2, sampler_options: Optional[List[float]] = None, trials: int = 40, p: float = 1.0):
super().__init__(min_scale, max_scale, min_aspect_ratio, max_aspect_ratio, sampler_options, trials)
self.p = p
def __call__(self, *inputs: Any) -> Any:
if torch.rand(1) >= self.p:
return inputs if len(inputs) > 1 else inputs[0]
return super().forward(*inputs)
@register
class ConvertBox(T.Transform):
_transformed_types = (
# datapoints.BoundingBox,
tv_tensors.BoundingBoxes, # TODO:修改
)
def __init__(self, out_fmt='', normalize=False) -> None:
super().__init__()
self.out_fmt = out_fmt
self.normalize = normalize
self.data_fmt = {
# 'xyxy': datapoints.BoundingBoxFormat.XYXY,
# 'cxcywh': datapoints.BoundingBoxFormat.CXCYWH
'xyxy': tv_tensors.BoundingBoxFormat.XYXY, # TODO:修改
'cxcywh': tv_tensors.BoundingBoxFormat.CXCYWH
}
def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
if self.out_fmt:
# spatial_size = inpt.spatial_size
spatial_size = inpt.canvas_size # TODO:修改
in_fmt = inpt.format.value.lower()
inpt = torchvision.ops.box_convert(inpt, in_fmt=in_fmt, out_fmt=self.out_fmt)
# inpt = datapoints.BoundingBox(inpt, format=self.data_fmt[self.out_fmt], spatial_size=spatial_size)
inpt = tv_tensors.BoundingBoxes(inpt, format=self.data_fmt[self.out_fmt], canvas_size=spatial_size) # TODO:修改
if self.normalize:
# inpt = inpt / torch.tensor(inpt.spatial_size[::-1]).tile(2)[None]
inpt = inpt / torch.tensor(inpt.canvas_size[::-1]).tile(2)[None] # TODO:修改
return inpt
from .logger import *
from .visualizer import *
"""
reference
- https://github.com/pytorch/vision/blob/main/references/detection/utils.py
- https://github.com/facebookresearch/detr/blob/master/util/misc.py#L406
by lyuwenyu
"""
import random
import numpy as np
import torch
import torch.nn as nn
import torch.distributed
import torch.distributed as tdist
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.data import DistributedSampler
from torch.utils.data.dataloader import DataLoader
def init_distributed():
'''
distributed setup
args:
backend (str), ('nccl', 'gloo')
'''
try:
# # https://pytorch.org/docs/stable/elastic/run.html
# LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1))
# RANK = int(os.getenv('RANK', -1))
# WORLD_SIZE = int(os.getenv('WORLD_SIZE', 1))
tdist.init_process_group(init_method='env://', )
torch.distributed.barrier()
rank = get_rank()
device = torch.device(f'cuda:{rank}')
torch.cuda.set_device(device)
setup_print(rank == 0)
print('Initialized distributed mode...')
return True
except:
print('Not init distributed mode.')
return False
def setup_print(is_main):
'''This function disables printing when not in master process
'''
import builtins as __builtin__
builtin_print = __builtin__.print
def print(*args, **kwargs):
force = kwargs.pop('force', False)
if is_main or force:
builtin_print(*args, **kwargs)
__builtin__.print = print
def is_dist_available_and_initialized():
if not tdist.is_available():
return False
if not tdist.is_initialized():
return False
return True
def get_rank():
if not is_dist_available_and_initialized():
return 0
return tdist.get_rank()
def get_world_size():
if not is_dist_available_and_initialized():
return 1
return tdist.get_world_size()
def is_main_process():
return get_rank() == 0
def save_on_master(*args, **kwargs):
if is_main_process():
torch.save(*args, **kwargs)
def warp_model(model, find_unused_parameters=False, sync_bn=False,):
if is_dist_available_and_initialized():
rank = get_rank()
model = nn.SyncBatchNorm.convert_sync_batchnorm(model) if sync_bn else model
model = DDP(model, device_ids=[rank], output_device=rank, find_unused_parameters=find_unused_parameters)
return model
def warp_loader(loader, shuffle=False):
if is_dist_available_and_initialized():
sampler = DistributedSampler(loader.dataset, shuffle=shuffle)
loader = DataLoader(loader.dataset,
loader.batch_size,
sampler=sampler,
drop_last=loader.drop_last,
collate_fn=loader.collate_fn,
pin_memory=loader.pin_memory,
num_workers=loader.num_workers, )
return loader
def is_parallel(model) -> bool:
# Returns True if model is of type DP or DDP
return type(model) in (torch.nn.parallel.DataParallel, torch.nn.parallel.DistributedDataParallel)
def de_parallel(model) -> nn.Module:
# De-parallelize a model: returns single-GPU model if model is of type DP or DDP
return model.module if is_parallel(model) else model
def reduce_dict(data, avg=True):
'''
Args
data dict: input, {k: v, ...}
avg bool: true
'''
world_size = get_world_size()
if world_size < 2:
return data
with torch.no_grad():
keys, values = [], []
for k in sorted(data.keys()):
keys.append(k)
values.append(data[k])
values = torch.stack(values, dim=0)
tdist.all_reduce(values)
if avg is True:
values /= world_size
_data = {k: v for k, v in zip(keys, values)}
return _data
def all_gather(data):
"""
Run all_gather on arbitrary picklable data (not necessarily tensors)
Args:
data: any picklable object
Returns:
list[data]: list of data gathered from each rank
"""
world_size = get_world_size()
if world_size == 1:
return [data]
data_list = [None] * world_size
tdist.all_gather_object(data_list, data)
return data_list
import time
def sync_time():
'''sync_time
'''
if torch.cuda.is_available():
torch.cuda.synchronize()
return time.time()
def set_seed(seed):
# fix the seed for reproducibility
seed = seed + get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
"""
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
https://github.com/facebookresearch/detr/blob/main/util/misc.py
Mostly copy-paste from torchvision references.
"""
import time
import pickle
import datetime
from collections import defaultdict, deque
from typing import Dict
import torch
import torch.distributed as tdist
from .dist import is_dist_available_and_initialized, get_world_size
class SmoothedValue(object):
"""Track a series of values and provide access to smoothed values over a
window or the global series average.
"""
def __init__(self, window_size=20, fmt=None):
if fmt is None:
fmt = "{median:.4f} ({global_avg:.4f})"
self.deque = deque(maxlen=window_size)
self.total = 0.0
self.count = 0
self.fmt = fmt
def update(self, value, n=1):
self.deque.append(value)
self.count += n
self.total += value * n
def synchronize_between_processes(self):
"""
Warning: does not synchronize the deque!
"""
if not is_dist_available_and_initialized():
return
t = torch.tensor([self.count, self.total], dtype=torch.float64, device='cuda')
tdist.barrier()
tdist.all_reduce(t)
t = t.tolist()
self.count = int(t[0])
self.total = t[1]
@property
def median(self):
d = torch.tensor(list(self.deque))
return d.median().item()
@property
def avg(self):
d = torch.tensor(list(self.deque), dtype=torch.float32)
return d.mean().item()
@property
def global_avg(self):
return self.total / self.count
@property
def max(self):
return max(self.deque)
@property
def value(self):
return self.deque[-1]
def __str__(self):
return self.fmt.format(
median=self.median,
avg=self.avg,
global_avg=self.global_avg,
max=self.max,
value=self.value)
def all_gather(data):
"""
Run all_gather on arbitrary picklable data (not necessarily tensors)
Args:
data: any picklable object
Returns:
list[data]: list of data gathered from each rank
"""
world_size = get_world_size()
if world_size == 1:
return [data]
# serialized to a Tensor
buffer = pickle.dumps(data)
storage = torch.ByteStorage.from_buffer(buffer)
tensor = torch.ByteTensor(storage).to("cuda")
# obtain Tensor size of each rank
local_size = torch.tensor([tensor.numel()], device="cuda")
size_list = [torch.tensor([0], device="cuda") for _ in range(world_size)]
tdist.all_gather(size_list, local_size)
size_list = [int(size.item()) for size in size_list]
max_size = max(size_list)
# receiving Tensor from all ranks
# we pad the tensor because torch all_gather does not support
# gathering tensors of different shapes
tensor_list = []
for _ in size_list:
tensor_list.append(torch.empty((max_size,), dtype=torch.uint8, device="cuda"))
if local_size != max_size:
padding = torch.empty(size=(max_size - local_size,), dtype=torch.uint8, device="cuda")
tensor = torch.cat((tensor, padding), dim=0)
tdist.all_gather(tensor_list, tensor)
data_list = []
for size, tensor in zip(size_list, tensor_list):
buffer = tensor.cpu().numpy().tobytes()[:size]
data_list.append(pickle.loads(buffer))
return data_list
def reduce_dict(input_dict, average=True) -> Dict[str, torch.Tensor]:
"""
Args:
input_dict (dict): all the values will be reduced
average (bool): whether to do average or sum
Reduce the values in the dictionary from all processes so that all processes
have the averaged results. Returns a dict with the same fields as
input_dict, after reduction.
"""
world_size = get_world_size()
if world_size < 2:
return input_dict
with torch.no_grad():
names = []
values = []
# sort the keys so that they are consistent across processes
for k in sorted(input_dict.keys()):
names.append(k)
values.append(input_dict[k])
values = torch.stack(values, dim=0)
tdist.all_reduce(values)
if average:
values /= world_size
reduced_dict = {k: v for k, v in zip(names, values)}
return reduced_dict
class MetricLogger(object):
def __init__(self, delimiter="\t"):
self.meters = defaultdict(SmoothedValue)
self.delimiter = delimiter
def update(self, **kwargs):
for k, v in kwargs.items():
if isinstance(v, torch.Tensor):
v = v.item()
assert isinstance(v, (float, int))
self.meters[k].update(v)
def __getattr__(self, attr):
if attr in self.meters:
return self.meters[attr]
if attr in self.__dict__:
return self.__dict__[attr]
raise AttributeError("'{}' object has no attribute '{}'".format(
type(self).__name__, attr))
def __str__(self):
loss_str = []
for name, meter in self.meters.items():
loss_str.append(
"{}: {}".format(name, str(meter))
)
return self.delimiter.join(loss_str)
def synchronize_between_processes(self):
for meter in self.meters.values():
meter.synchronize_between_processes()
def add_meter(self, name, meter):
self.meters[name] = meter
def log_every(self, iterable, print_freq, header=None):
i = 0
if not header:
header = ''
start_time = time.time()
end = time.time()
iter_time = SmoothedValue(fmt='{avg:.4f}')
data_time = SmoothedValue(fmt='{avg:.4f}')
space_fmt = ':' + str(len(str(len(iterable)))) + 'd'
if torch.cuda.is_available():
log_msg = self.delimiter.join([
header,
'[{0' + space_fmt + '}/{1}]',
'eta: {eta}',
'{meters}',
'time: {time}',
'data: {data}',
'max mem: {memory:.0f}'
])
else:
log_msg = self.delimiter.join([
header,
'[{0' + space_fmt + '}/{1}]',
'eta: {eta}',
'{meters}',
'time: {time}',
'data: {data}'
])
MB = 1024.0 * 1024.0
for obj in iterable:
data_time.update(time.time() - end)
yield obj
iter_time.update(time.time() - end)
if i % print_freq == 0 or i == len(iterable) - 1:
eta_seconds = iter_time.global_avg * (len(iterable) - i)
eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
if torch.cuda.is_available():
print(log_msg.format(
i, len(iterable), eta=eta_string,
meters=str(self),
time=str(iter_time), data=str(data_time),
memory=torch.cuda.max_memory_allocated() / MB))
else:
print(log_msg.format(
i, len(iterable), eta=eta_string,
meters=str(self),
time=str(iter_time), data=str(data_time)))
i += 1
end = time.time()
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('{} Total time: {} ({:.4f} s / it)'.format(
header, total_time_str, total_time / len(iterable)))
""""by lyuwenyu
"""
import torch
import torch.utils.data
import torchvision
torchvision.disable_beta_transforms_warning()
import PIL
__all__ = ['show_sample']
def show_sample(sample):
"""for coco dataset/dataloader
"""
import matplotlib.pyplot as plt
from torchvision.transforms.v2 import functional as F
from torchvision.utils import draw_bounding_boxes
image, target = sample
if isinstance(image, PIL.Image.Image):
image = F.to_image_tensor(image)
image = F.convert_dtype(image, torch.uint8)
annotated_image = draw_bounding_boxes(image, target["boxes"], colors="yellow", width=3)
fig, ax = plt.subplots()
ax.imshow(annotated_image.permute(1, 2, 0).numpy())
ax.set(xticklabels=[], yticklabels=[], xticks=[], yticks=[])
fig.tight_layout()
fig.show()
plt.show()
from .arch import *
from .criterion import *
#
from .backbone import *
from .classification import *
import torch
import torch.nn as nn
from src.core import register
__all__ = ['Classification', 'ClassHead']
@register
class Classification(nn.Module):
__inject__ = ['backbone', 'head']
def __init__(self, backbone: nn.Module, head: nn.Module=None):
super().__init__()
self.backbone = backbone
self.head = head
def forward(self, x):
x = self.backbone(x)
if self.head is not None:
x = self.head(x)
return x
@register
class ClassHead(nn.Module):
def __init__(self, hidden_dim, num_classes):
super().__init__()
self.pool = nn.AdaptiveAvgPool2d(1)
self.proj = nn.Linear(hidden_dim, num_classes)
def forward(self, x):
x = x[0] if isinstance(x, (list, tuple)) else x
x = self.pool(x)
x = x.reshape(x.shape[0], -1)
x = self.proj(x)
return x
from .presnet import *
from .test_resnet import *
from .common import *
\ No newline at end of file
'''by lyuwenyu
'''
import torch
import torch.nn as nn
class ConvNormLayer(nn.Module):
def __init__(self, ch_in, ch_out, kernel_size, stride, padding=None, bias=False, act=None):
super().__init__()
self.conv = nn.Conv2d(
ch_in,
ch_out,
kernel_size,
stride,
padding=(kernel_size-1)//2 if padding is None else padding,
bias=bias)
self.norm = nn.BatchNorm2d(ch_out)
self.act = nn.Identity() if act is None else get_activation(act)
def forward(self, x):
return self.act(self.norm(self.conv(x)))
class FrozenBatchNorm2d(nn.Module):
"""copy and modified from https://github.com/facebookresearch/detr/blob/master/models/backbone.py
BatchNorm2d where the batch statistics and the affine parameters are fixed.
Copy-paste from torchvision.misc.ops with added eps before rqsrt,
without which any other models than torchvision.models.resnet[18,34,50,101]
produce nans.
"""
def __init__(self, num_features, eps=1e-5):
super(FrozenBatchNorm2d, self).__init__()
n = num_features
self.register_buffer("weight", torch.ones(n))
self.register_buffer("bias", torch.zeros(n))
self.register_buffer("running_mean", torch.zeros(n))
self.register_buffer("running_var", torch.ones(n))
self.eps = eps
self.num_features = n
def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict,
missing_keys, unexpected_keys, error_msgs):
num_batches_tracked_key = prefix + 'num_batches_tracked'
if num_batches_tracked_key in state_dict:
del state_dict[num_batches_tracked_key]
super(FrozenBatchNorm2d, self)._load_from_state_dict(
state_dict, prefix, local_metadata, strict,
missing_keys, unexpected_keys, error_msgs)
def forward(self, x):
# move reshapes to the beginning
# to make it fuser-friendly
w = self.weight.reshape(1, -1, 1, 1)
b = self.bias.reshape(1, -1, 1, 1)
rv = self.running_var.reshape(1, -1, 1, 1)
rm = self.running_mean.reshape(1, -1, 1, 1)
scale = w * (rv + self.eps).rsqrt()
bias = b - rm * scale
return x * scale + bias
def extra_repr(self):
return (
"{num_features}, eps={eps}".format(**self.__dict__)
)
def get_activation(act: str, inpace: bool=True):
'''get activation
'''
act = act.lower()
if act == 'silu':
m = nn.SiLU()
elif act == 'relu':
m = nn.ReLU()
elif act == 'leaky_relu':
m = nn.LeakyReLU()
elif act == 'silu':
m = nn.SiLU()
elif act == 'gelu':
m = nn.GELU()
elif act is None:
m = nn.Identity()
elif isinstance(act, nn.Module):
m = act
else:
raise RuntimeError('')
if hasattr(m, 'inplace'):
m.inplace = inpace
return m
'''by lyuwenyu
'''
import torch
import torch.nn as nn
import torch.nn.functional as F
from collections import OrderedDict
from .common import get_activation, ConvNormLayer, FrozenBatchNorm2d
from src.core import register
__all__ = ['PResNet']
ResNet_cfg = {
18: [2, 2, 2, 2],
34: [3, 4, 6, 3],
50: [3, 4, 6, 3],
101: [3, 4, 23, 3],
# 152: [3, 8, 36, 3],
}
donwload_url = {
18: 'https://github.com/lyuwenyu/storage/releases/download/v0.1/ResNet18_vd_pretrained_from_paddle.pth',
34: 'https://github.com/lyuwenyu/storage/releases/download/v0.1/ResNet34_vd_pretrained_from_paddle.pth',
50: 'https://github.com/lyuwenyu/storage/releases/download/v0.1/ResNet50_vd_ssld_v2_pretrained_from_paddle.pth',
101: 'https://github.com/lyuwenyu/storage/releases/download/v0.1/ResNet101_vd_ssld_pretrained_from_paddle.pth',
}
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, ch_in, ch_out, stride, shortcut, act='relu', variant='b'):
super().__init__()
self.shortcut = shortcut
if not shortcut:
if variant == 'd' and stride == 2:
self.short = nn.Sequential(OrderedDict([
('pool', nn.AvgPool2d(2, 2, 0, ceil_mode=True)),
('conv', ConvNormLayer(ch_in, ch_out, 1, 1))
]))
else:
self.short = ConvNormLayer(ch_in, ch_out, 1, stride)
self.branch2a = ConvNormLayer(ch_in, ch_out, 3, stride, act=act)
self.branch2b = ConvNormLayer(ch_out, ch_out, 3, 1, act=None)
self.act = nn.Identity() if act is None else get_activation(act)
def forward(self, x):
out = self.branch2a(x)
out = self.branch2b(out)
if self.shortcut:
short = x
else:
short = self.short(x)
out = out + short
out = self.act(out)
return out
class BottleNeck(nn.Module):
expansion = 4
def __init__(self, ch_in, ch_out, stride, shortcut, act='relu', variant='b'):
super().__init__()
if variant == 'a':
stride1, stride2 = stride, 1
else:
stride1, stride2 = 1, stride
width = ch_out
self.branch2a = ConvNormLayer(ch_in, width, 1, stride1, act=act)
self.branch2b = ConvNormLayer(width, width, 3, stride2, act=act)
self.branch2c = ConvNormLayer(width, ch_out * self.expansion, 1, 1)
self.shortcut = shortcut
if not shortcut:
if variant == 'd' and stride == 2:
self.short = nn.Sequential(OrderedDict([
('pool', nn.AvgPool2d(2, 2, 0, ceil_mode=True)),
('conv', ConvNormLayer(ch_in, ch_out * self.expansion, 1, 1))
]))
else:
self.short = ConvNormLayer(ch_in, ch_out * self.expansion, 1, stride)
self.act = nn.Identity() if act is None else get_activation(act)
def forward(self, x):
out = self.branch2a(x)
out = self.branch2b(out)
out = self.branch2c(out)
if self.shortcut:
short = x
else:
short = self.short(x)
out = out + short
out = self.act(out)
return out
class Blocks(nn.Module):
def __init__(self, block, ch_in, ch_out, count, stage_num, act='relu', variant='b'):
super().__init__()
self.blocks = nn.ModuleList()
for i in range(count):
self.blocks.append(
block(
ch_in,
ch_out,
stride=2 if i == 0 and stage_num != 2 else 1,
shortcut=False if i == 0 else True,
variant=variant,
act=act)
)
if i == 0:
ch_in = ch_out * block.expansion
def forward(self, x):
out = x
for block in self.blocks:
out = block(out)
return out
@register
class PResNet(nn.Module):
def __init__(
self,
depth,
variant='d',
num_stages=4,
return_idx=[0, 1, 2, 3],
act='relu',
freeze_at=-1,
freeze_norm=True,
pretrained=False):
super().__init__()
block_nums = ResNet_cfg[depth]
ch_in = 64
if variant in ['c', 'd']:
conv_def = [
[3, ch_in // 2, 3, 2, "conv1_1"],
[ch_in // 2, ch_in // 2, 3, 1, "conv1_2"],
[ch_in // 2, ch_in, 3, 1, "conv1_3"],
]
else:
conv_def = [[3, ch_in, 7, 2, "conv1_1"]]
self.conv1 = nn.Sequential(OrderedDict([
(_name, ConvNormLayer(c_in, c_out, k, s, act=act)) for c_in, c_out, k, s, _name in conv_def
]))
ch_out_list = [64, 128, 256, 512]
block = BottleNeck if depth >= 50 else BasicBlock
_out_channels = [block.expansion * v for v in ch_out_list]
_out_strides = [4, 8, 16, 32]
self.res_layers = nn.ModuleList()
for i in range(num_stages):
stage_num = i + 2
self.res_layers.append(
Blocks(block, ch_in, ch_out_list[i], block_nums[i], stage_num, act=act, variant=variant)
)
ch_in = _out_channels[i]
self.return_idx = return_idx
self.out_channels = [_out_channels[_i] for _i in return_idx]
self.out_strides = [_out_strides[_i] for _i in return_idx]
if freeze_at >= 0:
self._freeze_parameters(self.conv1)
for i in range(min(freeze_at, num_stages)):
self._freeze_parameters(self.res_layers[i])
if freeze_norm:
self._freeze_norm(self)
if pretrained:
state = torch.hub.load_state_dict_from_url(donwload_url[depth])
self.load_state_dict(state)
print(f'Load PResNet{depth} state_dict')
def _freeze_parameters(self, m: nn.Module):
for p in m.parameters():
p.requires_grad = False
def _freeze_norm(self, m: nn.Module):
if isinstance(m, nn.BatchNorm2d):
m = FrozenBatchNorm2d(m.num_features)
else:
for name, child in m.named_children():
_child = self._freeze_norm(child)
if _child is not child:
setattr(m, name, _child)
return m
def forward(self, x):
conv1 = self.conv1(x)
x = F.max_pool2d(conv1, kernel_size=3, stride=2, padding=1)
outs = []
for idx, stage in enumerate(self.res_layers):
x = stage(x)
if idx in self.return_idx:
outs.append(x)
return outs
import torch
import torch.nn as nn
import torch.nn.functional as F
from collections import OrderedDict
from src.core import register
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, in_planes, planes, stride=1):
super(BasicBlock, self).__init__()
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3,stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.shortcut = nn.Sequential()
if stride != 1 or in_planes != self.expansion*planes:
self.shortcut = nn.Sequential(
nn.Conv2d(in_planes, self.expansion*planes,kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(self.expansion*planes)
)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.bn2(self.conv2(out))
out += self.shortcut(x)
out = F.relu(out)
return out
class _ResNet(nn.Module):
def __init__(self, block, num_blocks, num_classes=10):
super().__init__()
self.in_planes = 64
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1)
self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2)
self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2)
self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2)
self.linear = nn.Linear(512 * block.expansion, num_classes)
def _make_layer(self, block, planes, num_blocks, stride):
strides = [stride] + [1]*(num_blocks-1)
layers = []
for stride in strides:
layers.append(block(self.in_planes, planes, stride))
self.in_planes = planes * block.expansion
return nn.Sequential(*layers)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
out = self.layer4(out)
out = F.avg_pool2d(out, 4)
out = out.view(out.size(0), -1)
out = self.linear(out)
return out
@register
class MResNet(nn.Module):
def __init__(self, num_classes=10, num_blocks=[2, 2, 2, 2]) -> None:
super().__init__()
self.model = _ResNet(BasicBlock, num_blocks, num_classes)
def forward(self, x):
return self.model(x)
"""
https://github.com/pytorch/vision/blob/main/torchvision/models/_utils.py
by lyuwenyu
"""
from collections import OrderedDict
from typing import Dict, List
import torch.nn as nn
class IntermediateLayerGetter(nn.ModuleDict):
"""
Module wrapper that returns intermediate layers from a model
It has a strong assumption that the modules have been registered
into the model in the same order as they are used.
This means that one should **not** reuse the same nn.Module
twice in the forward if you want this to work.
Additionally, it is only able to query submodules that are directly
assigned to the model. So if `model` is passed, `model.feature1` can
be returned, but not `model.feature1.layer2`.
"""
_version = 3
def __init__(self, model: nn.Module, return_layers: List[str]) -> None:
if not set(return_layers).issubset([name for name, _ in model.named_children()]):
raise ValueError("return_layers are not present in model. {}"\
.format([name for name, _ in model.named_children()]))
orig_return_layers = return_layers
return_layers = {str(k): str(k) for k in return_layers}
layers = OrderedDict()
for name, module in model.named_children():
layers[name] = module
if name in return_layers:
del return_layers[name]
if not return_layers:
break
super().__init__(layers)
self.return_layers = orig_return_layers
def forward(self, x):
# out = OrderedDict()
outputs = []
for name, module in self.items():
x = module(x)
if name in self.return_layers:
# out_name = self.return_layers[name]
# out[out_name] = x
outputs.append(x)
return outputs
import torch.nn as nn
from src.core import register
CrossEntropyLoss = register(nn.CrossEntropyLoss)
import torch
import torchvision
def format_target(targets):
'''
Args:
targets (List[Dict]),
Return:
tensor (Tensor), [im_id, label, bbox,]
'''
outputs = []
for i, tgt in enumerate(targets):
boxes = torchvision.ops.box_convert(tgt['boxes'], in_fmt='xyxy', out_fmt='cxcywh')
labels = tgt['labels'].reshape(-1, 1)
im_ids = torch.ones_like(labels) * i
outputs.append(torch.cat([im_ids, labels, boxes], dim=1))
return torch.cat(outputs, dim=0)
from .ema import *
from .optim import *
from .amp import *
\ No newline at end of file
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment