dehaze_vq_model.py 15.8 KB
Newer Older
mashun1's avatar
ridcp  
mashun1 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
from collections import OrderedDict
from os import path as osp
from tqdm import tqdm

import torch
import torchvision.utils as tvu

from basicsr.archs import build_network
from basicsr.losses import build_loss
from basicsr.utils import get_root_logger, imwrite, tensor2img, img2tensor
from basicsr.utils.registry import MODEL_REGISTRY
from .base_model import BaseModel
import copy

import pyiqa


@MODEL_REGISTRY.register()
class VQDehazeModel(BaseModel):
    def __init__(self, opt):
        super().__init__(opt)

         # define network
        self.net_g = build_network(opt['network_g'])
        self.net_g = self.model_to_device(self.net_g)

        # define metric functions 
        if self.opt['val'].get('metrics') is not None:
            self.metric_funcs = {}
            for _, opt in self.opt['val']['metrics'].items(): 
                mopt = opt.copy()
                name = mopt.pop('type', None)
                mopt.pop('better', None)
                self.metric_funcs[name] = pyiqa.create_metric(name, device=self.device, **mopt)

        # load pre-trained HQ ckpt, frozen decoder and codebook 
        self.LQ_stage = self.opt['network_g'].get('LQ_stage', False) 
        if self.LQ_stage:
            load_path = self.opt['path'].get('pretrain_network_hq', None)
            assert load_path is not None, 'Need to specify hq prior model path in LQ stage'

            hq_opt = self.opt['network_g'].copy()
            hq_opt['LQ_stage'] = False
            # if hq_opt['only_residual']:
            #     hq_opt['only_residual'] = False
            self.net_hq = build_network(hq_opt)
            self.net_hq = self.model_to_device(self.net_hq)
            self.load_network(self.net_hq, load_path, self.opt['path']['strict_load'])

            self.load_network(self.net_g, load_path, False)
            frozen_module_keywords = self.opt['network_g'].get('frozen_module_keywords', None) 
            if frozen_module_keywords is not None:
                for name, module in self.net_g.named_modules():
                    for fkw in frozen_module_keywords:
                        if fkw in name:
                            for p in module.parameters():
                                p.requires_grad = False
                            break

        # load pretrained models
        load_path = self.opt['path'].get('pretrain_network_g', None)
        logger = get_root_logger()
        if load_path is not None:
            logger.info(f'Loading net_g from {load_path}')
            self.load_network(self.net_g, load_path, self.opt['path']['strict_load'])
            
        if self.is_train:
            self.init_training_settings()
            self.use_dis = (self.opt['train']['gan_opt']['loss_weight'] != 0) 
            self.net_d_best = copy.deepcopy(self.net_d)
        
        self.net_g_best = copy.deepcopy(self.net_g)

    def init_training_settings(self):
        logger = get_root_logger()
        train_opt = self.opt['train']
        self.net_g.train()

        # define network net_d
        self.net_d = build_network(self.opt['network_d'])
        self.net_d = self.model_to_device(self.net_d)
        # load pretrained d models
        load_path = self.opt['path'].get('pretrain_network_d', None)
        # print(load_path)
        if load_path is not None:
            logger.info(f'Loading net_d from {load_path}')
            self.load_network(self.net_d, load_path, self.opt['path'].get('strict_load_d', True))
            
        self.net_d.train()
    
        # define losses
        if train_opt.get('pixel_opt'):
            self.cri_pix = build_loss(train_opt['pixel_opt']).to(self.device)
        else:
            self.cri_pix = None

        if train_opt.get('perceptual_opt'):
            self.cri_perceptual = build_loss(train_opt['perceptual_opt']).to(self.device)
            self.model_to_device(self.cri_perceptual)
        else:
            self.cri_perceptual = None

        if train_opt.get('gan_opt'):
            self.cri_gan = build_loss(train_opt['gan_opt']).to(self.device)

        self.net_d_iters = train_opt.get('net_d_iters', 1)
        self.net_d_init_iters = train_opt.get('net_d_init_iters', 0)

        # set up optimizers and schedulers
        self.setup_optimizers()
        self.setup_schedulers()
    
    def setup_optimizers(self):
        train_opt = self.opt['train']
        optim_params = []
        for k, v in self.net_g.named_parameters():
            optim_params.append(v)
            if not v.requires_grad:
                logger = get_root_logger()
                logger.warning(f'Params {k} will not be optimized.')

        # optimizer g
        optim_type = train_opt['optim_g'].pop('type')
        optim_class = getattr(torch.optim, optim_type)
        self.optimizer_g = optim_class(optim_params, **train_opt['optim_g'])
        self.optimizers.append(self.optimizer_g)

        # optimizer d
        optim_type = train_opt['optim_d'].pop('type')
        optim_class = getattr(torch.optim, optim_type)
        self.optimizer_d = optim_class(self.net_d.parameters(), **train_opt['optim_d'])
        self.optimizers.append(self.optimizer_d)

    def feed_data(self, data):
        self.lq = data['lq'].to(self.device)
        if 'gt' in data:
            self.gt = data['gt'].to(self.device)

    def optimize_parameters(self, current_iter):
        train_opt = self.opt['train']

        for p in self.net_d.parameters():
            p.requires_grad = False
        self.optimizer_g.zero_grad()

        if self.LQ_stage:
            with torch.no_grad():
                self.gt_rec, _, _,  _, _, quant_gt, gt_indices = self.net_hq(self.gt)
            self.lq.requires_grad = True
            self.output, self.output_residual, l_codebook, l_semantic, quant_g, _, _ = self.net_g(self.lq, gt_indices) 
        else:
            self.output, self.output_residual, l_codebook, l_semantic, _ = self.net_g(self.gt) 

        # print(l_codebook.mean())
        l_g_total = 0
        loss_dict = OrderedDict()

        # ===================================================
        # codebook loss
        if train_opt.get('codebook_opt', None):
            l_codebook *= train_opt['codebook_opt']['loss_weight'] 
            l_g_total += l_codebook.mean()
            loss_dict['l_codebook'] = l_codebook.mean()

        # semantic cluster loss, only for LQ stage!
        if train_opt.get('semantic_opt', None) and isinstance(l_semantic, torch.Tensor):
            l_semantic *= train_opt['semantic_opt']['loss_weight'] 
            l_semantic = l_semantic.mean()
            l_g_total += l_semantic
            loss_dict['l_semantic'] = l_semantic

        # pixel loss
        if self.cri_pix:
            l_pix = self.cri_pix(self.output_residual, self.gt)
            l_g_total += l_pix
            loss_dict['l_pix'] = l_pix

        # perceptual loss
        if self.cri_perceptual:
            l_percep, l_style = self.cri_perceptual(self.output_residual, self.gt)
            if l_percep is not None:
                l_g_total += l_percep.mean()
                loss_dict['l_percep'] = l_percep.mean()
            if l_style is not None:
                l_g_total += l_style
                loss_dict['l_style'] = l_style
        
        # gan loss
        if self.use_dis and current_iter > train_opt['net_d_init_iters']:
            fake_g_pred = self.net_d(quant_g)
            l_g_gan = self.cri_gan(fake_g_pred, True, is_disc=False)
            l_g_total += l_g_gan
            loss_dict['l_g_gan'] = l_g_gan
        
        # print(l_g_total.requires_grad)
        # if l_g_total.requires_grad:
        l_g_total.mean().backward()
        self.optimizer_g.step()

        # optimize net_d
        self.fixed_disc = self.opt['train'].get('fixed_disc', False)
        if not self.fixed_disc and self.use_dis and current_iter > train_opt['net_d_init_iters']:
            for p in self.net_d.parameters():
                p.requires_grad = True
            self.optimizer_d.zero_grad()
            # real
            real_d_pred = self.net_d(quant_gt)
            l_d_real = self.cri_gan(real_d_pred, True, is_disc=True)
            loss_dict['l_d_real'] = l_d_real
            loss_dict['out_d_real'] = torch.mean(real_d_pred.detach())
            l_d_real.backward()
            # fake
            fake_d_pred = self.net_d(quant_g.detach())
            l_d_fake = self.cri_gan(fake_d_pred, False, is_disc=True)
            loss_dict['l_d_fake'] = l_d_fake
            loss_dict['out_d_fake'] = torch.mean(fake_d_pred.detach())
            l_d_fake.backward()
            self.optimizer_d.step()

        self.log_dict = self.reduce_loss_dict(loss_dict)
        
    def test(self):
        self.net_g.eval()
        net_g = self.get_bare_model(self.net_g)
        min_size = 8000 * 8000 # use smaller min_size with limited GPU memory
        lq_input = self.lq
        _, _, h, w = lq_input.shape
        if h*w < min_size:
            self.output = net_g.test(lq_input)
        else:
            self.output = net_g.test_tile(lq_input)
        self.net_g.train()
        
    def dist_validation(self, dataloader, current_iter, tb_logger, save_img, save_as_dir=None):
        logger = get_root_logger()
        logger.info('Only support single GPU validation.')
        self.nondist_validation(dataloader, current_iter, tb_logger, save_img, save_as_dir)

    def nondist_validation(self, dataloader, current_iter, tb_logger,
                           save_img, save_as_dir):
        dataset_name = dataloader.dataset.opt['name']
        with_metrics = self.opt['val'].get('metrics') is not None
        if with_metrics:
            self.metric_results = {
                metric: 0
                for metric in self.opt['val']['metrics'].keys()
            }
            
        pbar = tqdm(total=len(dataloader), unit='image')

        if with_metrics:
            if not hasattr(self, 'metric_results'):  # only execute in the first run
                self.metric_results = {metric: 0 for metric in self.opt['val']['metrics'].keys()}
            # initialize the best metric results for each dataset_name (supporting multiple validation datasets)
            self._initialize_best_metric_results(dataset_name)

            # zero self.metric_results
            self.metric_results = {metric: 0 for metric in self.metric_results}
            self.key_metric = self.opt['val'].get('key_metric') 

        for idx, val_data in enumerate(dataloader):
            img_name = osp.splitext(osp.basename(val_data['lq_path'][0]))[0]
            self.feed_data(val_data)
            self.test()
            
            sr_img = tensor2img(self.output[0])
            metric_data = [img2tensor(sr_img).unsqueeze(0) / 255, self.gt]

            # tentative for out of GPU memory
            del self.lq
            del self.output
            torch.cuda.empty_cache()

            if save_img:
                if self.opt['is_train']:
                    save_img_path = osp.join(self.opt['path']['visualization'], 'image_results',
                                             f'{current_iter}', 
                                             f'{img_name}.png')
                else:
                    if self.opt['val']['suffix']:
                        save_img_path = osp.join(
                            self.opt['path']['visualization'], dataset_name,
                            f'{img_name}_{self.opt["val"]["suffix"]}.png')
                    else:
                        save_img_path = osp.join(
                            self.opt['path']['visualization'], dataset_name,
                            f'{img_name}_{self.opt["name"]}.png')
                if save_as_dir:
                    save_as_img_path = osp.join(save_as_dir, f'{img_name}.png')
                    imwrite(sr_img, save_as_img_path)
                imwrite(sr_img, save_img_path)

            if with_metrics:
                # calculate metrics
                for name, opt_ in self.opt['val']['metrics'].items():
                    tmp_result = self.metric_funcs[name](*metric_data)
                    self.metric_results[name] += tmp_result.item() 

            pbar.update(1)
            pbar.set_description(f'Test {img_name}')

        pbar.close()
            
        if with_metrics:
            # calculate average metric
            for metric in self.metric_results.keys():
                self.metric_results[metric] /= (idx + 1)
            
            if self.key_metric is not None:
                # If the best metric is updated, update and save best model
                to_update = self._update_best_metric_result(dataset_name, self.key_metric, self.metric_results[self.key_metric], current_iter)
            
                if to_update:
                    for name, opt_ in self.opt['val']['metrics'].items():
                        self._update_metric_result(dataset_name, name, self.metric_results[name], current_iter)
                    self.copy_model(self.net_g, self.net_g_best)
                    self.copy_model(self.net_d, self.net_d_best)
                    self.save_network(self.net_g, 'net_g_best', '')
                    self.save_network(self.net_d, 'net_d_best', '')
            else:
                # update each metric separately 
                updated = []
                for name, opt_ in self.opt['val']['metrics'].items():
                    tmp_updated = self._update_best_metric_result(dataset_name, name, self.metric_results[name], current_iter)
                    updated.append(tmp_updated)
                # save best model if any metric is updated 
                if sum(updated): 
                    self.copy_model(self.net_g, self.net_g_best)
                    self.copy_model(self.net_d, self.net_d_best)
                    self.save_network(self.net_g, 'net_g_best', '')
                    self.save_network(self.net_d, 'net_d_best', '')

            self._log_validation_metric_values(current_iter, dataset_name, tb_logger)
            
    def _log_validation_metric_values(self, current_iter, dataset_name, tb_logger):
        log_str = f'Validation {dataset_name}\n'
        for metric, value in self.metric_results.items():
            log_str += f'\t # {metric}: {value:.4f}'
            if hasattr(self, 'best_metric_results'):
                log_str += (f'\tBest: {self.best_metric_results[dataset_name][metric]["val"]:.4f} @ '
                            f'{self.best_metric_results[dataset_name][metric]["iter"]} iter')
            log_str += '\n'

        logger = get_root_logger()
        logger.info(log_str)
        if tb_logger:
            for metric, value in self.metric_results.items():
                tb_logger.add_scalar(f'metrics/{dataset_name}/{metric}', value, current_iter)
    
    def vis_single_code(self, up_factor=2):
        net_g = self.get_bare_model(self.net_g)
        codenum = self.opt['network_g']['codebook_params'][0][1]
        with torch.no_grad():
            code_idx = torch.arange(codenum).reshape(codenum, 1, 1, 1)
            code_idx = code_idx.repeat(1, 1, up_factor, up_factor)
            output_img = net_g.decode_indices(code_idx) 
            output_img = tvu.make_grid(output_img, nrow=32)

        return output_img.unsqueeze(0)

    def get_current_visuals(self):
        vis_samples = 16
        out_dict = OrderedDict()
        out_dict['lq'] = self.lq.detach().cpu()[:vis_samples]
        if self.output != None:
            out_dict['result_codebook'] = self.output.detach().cpu()[:vis_samples]
        if self.output_residual != None:
            out_dict['result_residual'] = self.output_residual.detach().cpu()[:vis_samples]
        if not self.LQ_stage:
            out_dict['codebook'] = self.vis_single_code()
        if hasattr(self, 'gt_rec'):
            out_dict['gt_rec'] = self.gt_rec.detach().cpu()[:vis_samples]
        if hasattr(self, 'gt'):
            out_dict['gt'] = self.gt.detach().cpu()[:vis_samples]
        return out_dict

    def save(self, epoch, current_iter):
        self.save_network(self.net_g, 'net_g', current_iter)
        self.save_network(self.net_d, 'net_d', current_iter)
        self.save_training_state(epoch, current_iter)