Commit e129194a authored by Sugon_ldc's avatar Sugon_ldc
Browse files

add new model resnet50v1.5

parents
Pipeline #571 failed with stages
in 0 seconds
python ./multiproc.py --nproc_per_node 8 ./launch.py --model efficientnet-b4 --precision AMP --mode benchmark_inference --platform DGXA100 /imagenet -b 1 --workspace ${1:-./} --raport-file raport_1.json
python ./multiproc.py --nproc_per_node 8 ./launch.py --model efficientnet-b4 --precision AMP --mode benchmark_inference --platform DGXA100 /imagenet -b 2 --workspace ${1:-./} --raport-file raport_2.json
python ./multiproc.py --nproc_per_node 8 ./launch.py --model efficientnet-b4 --precision AMP --mode benchmark_inference --platform DGXA100 /imagenet -b 4 --workspace ${1:-./} --raport-file raport_4.json
python ./multiproc.py --nproc_per_node 8 ./launch.py --model efficientnet-b4 --precision AMP --mode benchmark_inference --platform DGXA100 /imagenet -b 8 --workspace ${1:-./} --raport-file raport_8.json
python ./multiproc.py --nproc_per_node 8 ./launch.py --model efficientnet-b4 --precision AMP --mode benchmark_inference --platform DGXA100 /imagenet -b 16 --workspace ${1:-./} --raport-file raport_16.json
python ./multiproc.py --nproc_per_node 8 ./launch.py --model efficientnet-b4 --precision AMP --mode benchmark_inference --platform DGXA100 /imagenet -b 32 --workspace ${1:-./} --raport-file raport_32.json
python ./multiproc.py --nproc_per_node 8 ./launch.py --model efficientnet-b4 --precision AMP --mode benchmark_inference --platform DGXA100 /imagenet -b 64 --workspace ${1:-./} --raport-file raport_64.json
python ./multiproc.py --nproc_per_node 8 ./launch.py --model efficientnet-b4 --precision AMP --mode benchmark_inference --platform DGXA100 /imagenet -b 128 --workspace ${1:-./} --raport-file raport_128.json
python ./multiproc.py --nproc_per_node 8 ./launch.py --model efficientnet-b4 --precision AMP --mode benchmark_inference --platform DGXA100 /imagenet -b 256 --workspace ${1:-./} --raport-file raport_256.json
python ./multiproc.py --nproc_per_node 8 ./launch.py --model efficientnet-widese-b0 --precision AMP --mode benchmark_inference --platform DGXA100 /imagenet -b 1 --workspace ${1:-./} --raport-file raport_1.json
python ./multiproc.py --nproc_per_node 8 ./launch.py --model efficientnet-widese-b0 --precision AMP --mode benchmark_inference --platform DGXA100 /imagenet -b 2 --workspace ${1:-./} --raport-file raport_2.json
python ./multiproc.py --nproc_per_node 8 ./launch.py --model efficientnet-widese-b0 --precision AMP --mode benchmark_inference --platform DGXA100 /imagenet -b 4 --workspace ${1:-./} --raport-file raport_4.json
python ./multiproc.py --nproc_per_node 8 ./launch.py --model efficientnet-widese-b0 --precision AMP --mode benchmark_inference --platform DGXA100 /imagenet -b 8 --workspace ${1:-./} --raport-file raport_8.json
python ./multiproc.py --nproc_per_node 8 ./launch.py --model efficientnet-widese-b0 --precision AMP --mode benchmark_inference --platform DGXA100 /imagenet -b 16 --workspace ${1:-./} --raport-file raport_16.json
python ./multiproc.py --nproc_per_node 8 ./launch.py --model efficientnet-widese-b0 --precision AMP --mode benchmark_inference --platform DGXA100 /imagenet -b 32 --workspace ${1:-./} --raport-file raport_32.json
python ./multiproc.py --nproc_per_node 8 ./launch.py --model efficientnet-widese-b0 --precision AMP --mode benchmark_inference --platform DGXA100 /imagenet -b 64 --workspace ${1:-./} --raport-file raport_64.json
python ./multiproc.py --nproc_per_node 8 ./launch.py --model efficientnet-widese-b0 --precision AMP --mode benchmark_inference --platform DGXA100 /imagenet -b 128 --workspace ${1:-./} --raport-file raport_128.json
python ./multiproc.py --nproc_per_node 8 ./launch.py --model efficientnet-widese-b0 --precision AMP --mode benchmark_inference --platform DGXA100 /imagenet -b 256 --workspace ${1:-./} --raport-file raport_256.json
python ./multiproc.py --nproc_per_node 8 ./launch.py --model efficientnet-widese-b4 --precision AMP --mode benchmark_inference --platform DGXA100 /imagenet -b 1 --workspace ${1:-./} --raport-file raport_1.json
python ./multiproc.py --nproc_per_node 8 ./launch.py --model efficientnet-widese-b4 --precision AMP --mode benchmark_inference --platform DGXA100 /imagenet -b 2 --workspace ${1:-./} --raport-file raport_2.json
python ./multiproc.py --nproc_per_node 8 ./launch.py --model efficientnet-widese-b4 --precision AMP --mode benchmark_inference --platform DGXA100 /imagenet -b 4 --workspace ${1:-./} --raport-file raport_4.json
python ./multiproc.py --nproc_per_node 8 ./launch.py --model efficientnet-widese-b4 --precision AMP --mode benchmark_inference --platform DGXA100 /imagenet -b 8 --workspace ${1:-./} --raport-file raport_8.json
python ./multiproc.py --nproc_per_node 8 ./launch.py --model efficientnet-widese-b4 --precision AMP --mode benchmark_inference --platform DGXA100 /imagenet -b 16 --workspace ${1:-./} --raport-file raport_16.json
python ./multiproc.py --nproc_per_node 8 ./launch.py --model efficientnet-widese-b4 --precision AMP --mode benchmark_inference --platform DGXA100 /imagenet -b 32 --workspace ${1:-./} --raport-file raport_32.json
python ./multiproc.py --nproc_per_node 8 ./launch.py --model efficientnet-widese-b4 --precision AMP --mode benchmark_inference --platform DGXA100 /imagenet -b 64 --workspace ${1:-./} --raport-file raport_64.json
python ./multiproc.py --nproc_per_node 8 ./launch.py --model efficientnet-widese-b4 --precision AMP --mode benchmark_inference --platform DGXA100 /imagenet -b 128 --workspace ${1:-./} --raport-file raport_128.json
python ./multiproc.py --nproc_per_node 8 ./launch.py --model efficientnet-widese-b4 --precision AMP --mode benchmark_inference --platform DGXA100 /imagenet -b 256 --workspace ${1:-./} --raport-file raport_256.json
python ./multiproc.py --nproc_per_node 8 ./launch.py --model efficientnet-b0 --precision FP32 --mode benchmark_inference --platform DGXA100 /imagenet -b 1 --workspace ${1:-./} --raport-file raport_1.json
python ./multiproc.py --nproc_per_node 8 ./launch.py --model efficientnet-b0 --precision FP32 --mode benchmark_inference --platform DGXA100 /imagenet -b 2 --workspace ${1:-./} --raport-file raport_2.json
python ./multiproc.py --nproc_per_node 8 ./launch.py --model efficientnet-b0 --precision FP32 --mode benchmark_inference --platform DGXA100 /imagenet -b 4 --workspace ${1:-./} --raport-file raport_4.json
python ./multiproc.py --nproc_per_node 8 ./launch.py --model efficientnet-b0 --precision FP32 --mode benchmark_inference --platform DGXA100 /imagenet -b 8 --workspace ${1:-./} --raport-file raport_8.json
python ./multiproc.py --nproc_per_node 8 ./launch.py --model efficientnet-b0 --precision FP32 --mode benchmark_inference --platform DGXA100 /imagenet -b 16 --workspace ${1:-./} --raport-file raport_16.json
python ./multiproc.py --nproc_per_node 8 ./launch.py --model efficientnet-b0 --precision FP32 --mode benchmark_inference --platform DGXA100 /imagenet -b 32 --workspace ${1:-./} --raport-file raport_32.json
python ./multiproc.py --nproc_per_node 8 ./launch.py --model efficientnet-b0 --precision FP32 --mode benchmark_inference --platform DGXA100 /imagenet -b 64 --workspace ${1:-./} --raport-file raport_64.json
python ./multiproc.py --nproc_per_node 8 ./launch.py --model efficientnet-b0 --precision FP32 --mode benchmark_inference --platform DGXA100 /imagenet -b 128 --workspace ${1:-./} --raport-file raport_128.json
python ./multiproc.py --nproc_per_node 8 ./launch.py --model efficientnet-b4 --precision FP32 --mode benchmark_inference --platform DGXA100 /imagenet -b 1 --workspace ${1:-./} --raport-file raport_1.json
python ./multiproc.py --nproc_per_node 8 ./launch.py --model efficientnet-b4 --precision FP32 --mode benchmark_inference --platform DGXA100 /imagenet -b 2 --workspace ${1:-./} --raport-file raport_2.json
python ./multiproc.py --nproc_per_node 8 ./launch.py --model efficientnet-b4 --precision FP32 --mode benchmark_inference --platform DGXA100 /imagenet -b 4 --workspace ${1:-./} --raport-file raport_4.json
python ./multiproc.py --nproc_per_node 8 ./launch.py --model efficientnet-b4 --precision FP32 --mode benchmark_inference --platform DGXA100 /imagenet -b 8 --workspace ${1:-./} --raport-file raport_8.json
python ./multiproc.py --nproc_per_node 8 ./launch.py --model efficientnet-b4 --precision FP32 --mode benchmark_inference --platform DGXA100 /imagenet -b 16 --workspace ${1:-./} --raport-file raport_16.json
python ./multiproc.py --nproc_per_node 8 ./launch.py --model efficientnet-b4 --precision FP32 --mode benchmark_inference --platform DGXA100 /imagenet -b 32 --workspace ${1:-./} --raport-file raport_32.json
python ./multiproc.py --nproc_per_node 8 ./launch.py --model efficientnet-b4 --precision FP32 --mode benchmark_inference --platform DGXA100 /imagenet -b 64 --workspace ${1:-./} --raport-file raport_64.json
python ./multiproc.py --nproc_per_node 8 ./launch.py --model efficientnet-b4 --precision FP32 --mode benchmark_inference --platform DGXA100 /imagenet -b 128 --workspace ${1:-./} --raport-file raport_128.json
python ./multiproc.py --nproc_per_node 8 ./launch.py --model efficientnet-widese-b0 --precision FP32 --mode benchmark_inference --platform DGXA100 /imagenet -b 1 --workspace ${1:-./} --raport-file raport_1.json
python ./multiproc.py --nproc_per_node 8 ./launch.py --model efficientnet-widese-b0 --precision FP32 --mode benchmark_inference --platform DGXA100 /imagenet -b 2 --workspace ${1:-./} --raport-file raport_2.json
python ./multiproc.py --nproc_per_node 8 ./launch.py --model efficientnet-widese-b0 --precision FP32 --mode benchmark_inference --platform DGXA100 /imagenet -b 4 --workspace ${1:-./} --raport-file raport_4.json
python ./multiproc.py --nproc_per_node 8 ./launch.py --model efficientnet-widese-b0 --precision FP32 --mode benchmark_inference --platform DGXA100 /imagenet -b 8 --workspace ${1:-./} --raport-file raport_8.json
python ./multiproc.py --nproc_per_node 8 ./launch.py --model efficientnet-widese-b0 --precision FP32 --mode benchmark_inference --platform DGXA100 /imagenet -b 16 --workspace ${1:-./} --raport-file raport_16.json
python ./multiproc.py --nproc_per_node 8 ./launch.py --model efficientnet-widese-b0 --precision FP32 --mode benchmark_inference --platform DGXA100 /imagenet -b 32 --workspace ${1:-./} --raport-file raport_32.json
python ./multiproc.py --nproc_per_node 8 ./launch.py --model efficientnet-widese-b0 --precision FP32 --mode benchmark_inference --platform DGXA100 /imagenet -b 64 --workspace ${1:-./} --raport-file raport_64.json
python ./multiproc.py --nproc_per_node 8 ./launch.py --model efficientnet-widese-b0 --precision FP32 --mode benchmark_inference --platform DGXA100 /imagenet -b 128 --workspace ${1:-./} --raport-file raport_128.json
python ./multiproc.py --nproc_per_node 8 ./launch.py --model efficientnet-widese-b4 --precision FP32 --mode benchmark_inference --platform DGXA100 /imagenet -b 1 --workspace ${1:-./} --raport-file raport_1.json
python ./multiproc.py --nproc_per_node 8 ./launch.py --model efficientnet-widese-b4 --precision FP32 --mode benchmark_inference --platform DGXA100 /imagenet -b 2 --workspace ${1:-./} --raport-file raport_2.json
python ./multiproc.py --nproc_per_node 8 ./launch.py --model efficientnet-widese-b4 --precision FP32 --mode benchmark_inference --platform DGXA100 /imagenet -b 4 --workspace ${1:-./} --raport-file raport_4.json
python ./multiproc.py --nproc_per_node 8 ./launch.py --model efficientnet-widese-b4 --precision FP32 --mode benchmark_inference --platform DGXA100 /imagenet -b 8 --workspace ${1:-./} --raport-file raport_8.json
python ./multiproc.py --nproc_per_node 8 ./launch.py --model efficientnet-widese-b4 --precision FP32 --mode benchmark_inference --platform DGXA100 /imagenet -b 16 --workspace ${1:-./} --raport-file raport_16.json
python ./multiproc.py --nproc_per_node 8 ./launch.py --model efficientnet-widese-b4 --precision FP32 --mode benchmark_inference --platform DGXA100 /imagenet -b 32 --workspace ${1:-./} --raport-file raport_32.json
python ./multiproc.py --nproc_per_node 8 ./launch.py --model efficientnet-widese-b4 --precision FP32 --mode benchmark_inference --platform DGXA100 /imagenet -b 64 --workspace ${1:-./} --raport-file raport_64.json
python ./multiproc.py --nproc_per_node 8 ./launch.py --model efficientnet-widese-b4 --precision FP32 --mode benchmark_inference --platform DGXA100 /imagenet -b 128 --workspace ${1:-./} --raport-file raport_128.json
python ./multiproc.py --nproc_per_node 8 ./launch.py --model efficientnet-b0 --precision TF32 --mode benchmark_inference --platform DGXA100 /imagenet -b 1 --workspace ${1:-./} --raport-file raport_1.json
python ./multiproc.py --nproc_per_node 8 ./launch.py --model efficientnet-b0 --precision TF32 --mode benchmark_inference --platform DGXA100 /imagenet -b 2 --workspace ${1:-./} --raport-file raport_2.json
python ./multiproc.py --nproc_per_node 8 ./launch.py --model efficientnet-b0 --precision TF32 --mode benchmark_inference --platform DGXA100 /imagenet -b 4 --workspace ${1:-./} --raport-file raport_4.json
python ./multiproc.py --nproc_per_node 8 ./launch.py --model efficientnet-b0 --precision TF32 --mode benchmark_inference --platform DGXA100 /imagenet -b 8 --workspace ${1:-./} --raport-file raport_8.json
python ./multiproc.py --nproc_per_node 8 ./launch.py --model efficientnet-b0 --precision TF32 --mode benchmark_inference --platform DGXA100 /imagenet -b 16 --workspace ${1:-./} --raport-file raport_16.json
python ./multiproc.py --nproc_per_node 8 ./launch.py --model efficientnet-b0 --precision TF32 --mode benchmark_inference --platform DGXA100 /imagenet -b 32 --workspace ${1:-./} --raport-file raport_32.json
python ./multiproc.py --nproc_per_node 8 ./launch.py --model efficientnet-b0 --precision TF32 --mode benchmark_inference --platform DGXA100 /imagenet -b 64 --workspace ${1:-./} --raport-file raport_64.json
python ./multiproc.py --nproc_per_node 8 ./launch.py --model efficientnet-b0 --precision TF32 --mode benchmark_inference --platform DGXA100 /imagenet -b 128 --workspace ${1:-./} --raport-file raport_128.json
python ./multiproc.py --nproc_per_node 8 ./launch.py --model efficientnet-b0 --precision TF32 --mode benchmark_inference --platform DGXA100 /imagenet -b 256 --workspace ${1:-./} --raport-file raport_256.json
python ./multiproc.py --nproc_per_node 8 ./launch.py --model efficientnet-b4 --precision TF32 --mode benchmark_inference --platform DGXA100 /imagenet -b 1 --workspace ${1:-./} --raport-file raport_1.json
python ./multiproc.py --nproc_per_node 8 ./launch.py --model efficientnet-b4 --precision TF32 --mode benchmark_inference --platform DGXA100 /imagenet -b 2 --workspace ${1:-./} --raport-file raport_2.json
python ./multiproc.py --nproc_per_node 8 ./launch.py --model efficientnet-b4 --precision TF32 --mode benchmark_inference --platform DGXA100 /imagenet -b 4 --workspace ${1:-./} --raport-file raport_4.json
python ./multiproc.py --nproc_per_node 8 ./launch.py --model efficientnet-b4 --precision TF32 --mode benchmark_inference --platform DGXA100 /imagenet -b 8 --workspace ${1:-./} --raport-file raport_8.json
python ./multiproc.py --nproc_per_node 8 ./launch.py --model efficientnet-b4 --precision TF32 --mode benchmark_inference --platform DGXA100 /imagenet -b 16 --workspace ${1:-./} --raport-file raport_16.json
python ./multiproc.py --nproc_per_node 8 ./launch.py --model efficientnet-b4 --precision TF32 --mode benchmark_inference --platform DGXA100 /imagenet -b 32 --workspace ${1:-./} --raport-file raport_32.json
python ./multiproc.py --nproc_per_node 8 ./launch.py --model efficientnet-b4 --precision TF32 --mode benchmark_inference --platform DGXA100 /imagenet -b 64 --workspace ${1:-./} --raport-file raport_64.json
python ./multiproc.py --nproc_per_node 8 ./launch.py --model efficientnet-b4 --precision TF32 --mode benchmark_inference --platform DGXA100 /imagenet -b 128 --workspace ${1:-./} --raport-file raport_128.json
python ./multiproc.py --nproc_per_node 8 ./launch.py --model efficientnet-b4 --precision TF32 --mode benchmark_inference --platform DGXA100 /imagenet -b 256 --workspace ${1:-./} --raport-file raport_256.json
python ./multiproc.py --nproc_per_node 8 ./launch.py --model efficientnet-widese-b0 --precision TF32 --mode benchmark_inference --platform DGXA100 /imagenet -b 1 --workspace ${1:-./} --raport-file raport_1.json
python ./multiproc.py --nproc_per_node 8 ./launch.py --model efficientnet-widese-b0 --precision TF32 --mode benchmark_inference --platform DGXA100 /imagenet -b 2 --workspace ${1:-./} --raport-file raport_2.json
python ./multiproc.py --nproc_per_node 8 ./launch.py --model efficientnet-widese-b0 --precision TF32 --mode benchmark_inference --platform DGXA100 /imagenet -b 4 --workspace ${1:-./} --raport-file raport_4.json
python ./multiproc.py --nproc_per_node 8 ./launch.py --model efficientnet-widese-b0 --precision TF32 --mode benchmark_inference --platform DGXA100 /imagenet -b 8 --workspace ${1:-./} --raport-file raport_8.json
python ./multiproc.py --nproc_per_node 8 ./launch.py --model efficientnet-widese-b0 --precision TF32 --mode benchmark_inference --platform DGXA100 /imagenet -b 16 --workspace ${1:-./} --raport-file raport_16.json
python ./multiproc.py --nproc_per_node 8 ./launch.py --model efficientnet-widese-b0 --precision TF32 --mode benchmark_inference --platform DGXA100 /imagenet -b 32 --workspace ${1:-./} --raport-file raport_32.json
python ./multiproc.py --nproc_per_node 8 ./launch.py --model efficientnet-widese-b0 --precision TF32 --mode benchmark_inference --platform DGXA100 /imagenet -b 64 --workspace ${1:-./} --raport-file raport_64.json
python ./multiproc.py --nproc_per_node 8 ./launch.py --model efficientnet-widese-b0 --precision TF32 --mode benchmark_inference --platform DGXA100 /imagenet -b 128 --workspace ${1:-./} --raport-file raport_128.json
python ./multiproc.py --nproc_per_node 8 ./launch.py --model efficientnet-widese-b0 --precision TF32 --mode benchmark_inference --platform DGXA100 /imagenet -b 256 --workspace ${1:-./} --raport-file raport_256.json
python ./multiproc.py --nproc_per_node 8 ./launch.py --model efficientnet-widese-b4 --precision TF32 --mode benchmark_inference --platform DGXA100 /imagenet -b 1 --workspace ${1:-./} --raport-file raport_1.json
python ./multiproc.py --nproc_per_node 8 ./launch.py --model efficientnet-widese-b4 --precision TF32 --mode benchmark_inference --platform DGXA100 /imagenet -b 2 --workspace ${1:-./} --raport-file raport_2.json
python ./multiproc.py --nproc_per_node 8 ./launch.py --model efficientnet-widese-b4 --precision TF32 --mode benchmark_inference --platform DGXA100 /imagenet -b 4 --workspace ${1:-./} --raport-file raport_4.json
python ./multiproc.py --nproc_per_node 8 ./launch.py --model efficientnet-widese-b4 --precision TF32 --mode benchmark_inference --platform DGXA100 /imagenet -b 8 --workspace ${1:-./} --raport-file raport_8.json
python ./multiproc.py --nproc_per_node 8 ./launch.py --model efficientnet-widese-b4 --precision TF32 --mode benchmark_inference --platform DGXA100 /imagenet -b 16 --workspace ${1:-./} --raport-file raport_16.json
python ./multiproc.py --nproc_per_node 8 ./launch.py --model efficientnet-widese-b4 --precision TF32 --mode benchmark_inference --platform DGXA100 /imagenet -b 32 --workspace ${1:-./} --raport-file raport_32.json
python ./multiproc.py --nproc_per_node 8 ./launch.py --model efficientnet-widese-b4 --precision TF32 --mode benchmark_inference --platform DGXA100 /imagenet -b 64 --workspace ${1:-./} --raport-file raport_64.json
python ./multiproc.py --nproc_per_node 8 ./launch.py --model efficientnet-widese-b4 --precision TF32 --mode benchmark_inference --platform DGXA100 /imagenet -b 128 --workspace ${1:-./} --raport-file raport_128.json
python ./multiproc.py --nproc_per_node 8 ./launch.py --model efficientnet-widese-b4 --precision TF32 --mode benchmark_inference --platform DGXA100 /imagenet -b 256 --workspace ${1:-./} --raport-file raport_256.json
python ./multiproc.py \
--nproc_per_node 8 \
./quant_main.py /imagenet \
--arch efficientnet-quant-b0 \
--epochs 10 \
-j5 -p 500 \
--data-backend pytorch \
--optimizer sgd \
-b 128 \
--lr 0.0125 \
--momentum 0.89 \
--weight-decay 4.50e-05 \
--lr-schedule cosine \
--pretrained-from-file "${1}"
\ No newline at end of file
python ./multiproc.py \
--nproc_per_node 8 \
./quant_main.py /imagenet \
--arch efficientnet-quant-b4 \
--epochs 2 \
-j5 -p 500 \
--data-backend pytorch \
--optimizer rmsprop \
-b 32 \
--lr 4.09e-06 \
--momentum 0.9 \
--weight-decay 9.714e-04 \
--lr-schedule linear \
--rmsprop-alpha 0.853 \
--rmsprop-eps 0.00422 \
--pretrained-from-file "${1}"
python ./multiproc.py --nproc_per_node 8 ./launch.py --model efficientnet-b0 --precision AMP --mode convergence --platform DGX1V-16G /imagenet --workspace ${1:-./} --raport-file raport.json
python ./multiproc.py --nproc_per_node 8 ./launch.py --model efficientnet-widese-b0 --precision AMP --mode convergence --platform DGX1V-16G /imagenet --workspace ${1:-./} --raport-file raport.json
python ./multiproc.py --nproc_per_node 8 ./launch.py --model efficientnet-b0 --precision AMP --mode convergence --platform DGXA100 /imagenet --workspace ${1:-./} --raport-file raport.json
python ./multiproc.py --nproc_per_node 8 ./launch.py --model efficientnet-b4 --precision AMP --mode convergence --platform DGXA100 /imagenet --workspace ${1:-./} --raport-file raport.json
python ./multiproc.py --nproc_per_node 8 ./launch.py --model efficientnet-widese-b0 --precision AMP --mode convergence --platform DGXA100 /imagenet --workspace ${1:-./} --raport-file raport.json
python ./multiproc.py --nproc_per_node 8 ./launch.py --model efficientnet-widese-b4 --precision AMP --mode convergence --platform DGXA100 /imagenet --workspace ${1:-./} --raport-file raport.json
python ./multiproc.py --nproc_per_node 8 ./launch.py --model efficientnet-b0 --precision FP32 --mode convergence --platform DGX1V-16G /imagenet --workspace ${1:-./} --raport-file raport.json
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment