Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
ResNet50v1.5_pytorch
Commits
e129194a
Commit
e129194a
authored
Sep 26, 2023
by
Sugon_ldc
Browse files
add new model resnet50v1.5
parents
Pipeline
#571
failed with stages
in 0 seconds
Changes
197
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
144 additions
and
0 deletions
+144
-0
efficientnet/inference/AMP/DGXA100_efficientnet-b4_AMP.sh
efficientnet/inference/AMP/DGXA100_efficientnet-b4_AMP.sh
+10
-0
efficientnet/inference/AMP/DGXA100_efficientnet-widese-b0_AMP.sh
...ntnet/inference/AMP/DGXA100_efficientnet-widese-b0_AMP.sh
+10
-0
efficientnet/inference/AMP/DGXA100_efficientnet-widese-b4_AMP.sh
...ntnet/inference/AMP/DGXA100_efficientnet-widese-b4_AMP.sh
+10
-0
efficientnet/inference/FP32/DGXA100_efficientnet-b0_FP32.sh
efficientnet/inference/FP32/DGXA100_efficientnet-b0_FP32.sh
+9
-0
efficientnet/inference/FP32/DGXA100_efficientnet-b4_FP32.sh
efficientnet/inference/FP32/DGXA100_efficientnet-b4_FP32.sh
+9
-0
efficientnet/inference/FP32/DGXA100_efficientnet-widese-b0_FP32.sh
...net/inference/FP32/DGXA100_efficientnet-widese-b0_FP32.sh
+9
-0
efficientnet/inference/FP32/DGXA100_efficientnet-widese-b4_FP32.sh
...net/inference/FP32/DGXA100_efficientnet-widese-b4_FP32.sh
+9
-0
efficientnet/inference/TF32/DGXA100_efficientnet-b0_TF32.sh
efficientnet/inference/TF32/DGXA100_efficientnet-b0_TF32.sh
+10
-0
efficientnet/inference/TF32/DGXA100_efficientnet-b4_TF32.sh
efficientnet/inference/TF32/DGXA100_efficientnet-b4_TF32.sh
+10
-0
efficientnet/inference/TF32/DGXA100_efficientnet-widese-b0_TF32.sh
...net/inference/TF32/DGXA100_efficientnet-widese-b0_TF32.sh
+10
-0
efficientnet/inference/TF32/DGXA100_efficientnet-widese-b4_TF32.sh
...net/inference/TF32/DGXA100_efficientnet-widese-b4_TF32.sh
+10
-0
efficientnet/quantization/DGX1V-32G_efficientnet-quant-b0_FP32.sh
...tnet/quantization/DGX1V-32G_efficientnet-quant-b0_FP32.sh
+15
-0
efficientnet/quantization/DGX1V-32G_efficientnet-quant-b4_FP32.sh
...tnet/quantization/DGX1V-32G_efficientnet-quant-b4_FP32.sh
+16
-0
efficientnet/training/AMP/DGX1V-16G_efficientnet-b0_AMP.sh
efficientnet/training/AMP/DGX1V-16G_efficientnet-b0_AMP.sh
+1
-0
efficientnet/training/AMP/DGX1V-16G_efficientnet-widese-b0_AMP.sh
...tnet/training/AMP/DGX1V-16G_efficientnet-widese-b0_AMP.sh
+1
-0
efficientnet/training/AMP/DGXA100_efficientnet-b0_AMP.sh
efficientnet/training/AMP/DGXA100_efficientnet-b0_AMP.sh
+1
-0
efficientnet/training/AMP/DGXA100_efficientnet-b4_AMP.sh
efficientnet/training/AMP/DGXA100_efficientnet-b4_AMP.sh
+1
-0
efficientnet/training/AMP/DGXA100_efficientnet-widese-b0_AMP.sh
...entnet/training/AMP/DGXA100_efficientnet-widese-b0_AMP.sh
+1
-0
efficientnet/training/AMP/DGXA100_efficientnet-widese-b4_AMP.sh
...entnet/training/AMP/DGXA100_efficientnet-widese-b4_AMP.sh
+1
-0
efficientnet/training/FP32/DGX1V-16G_efficientnet-b0_FP32.sh
efficientnet/training/FP32/DGX1V-16G_efficientnet-b0_FP32.sh
+1
-0
No files found.
efficientnet/inference/AMP/DGXA100_efficientnet-b4_AMP.sh
0 → 100644
View file @
e129194a
python ./multiproc.py
--nproc_per_node
8 ./launch.py
--model
efficientnet-b4
--precision
AMP
--mode
benchmark_inference
--platform
DGXA100 /imagenet
-b
1
--workspace
${
1
:-
./
}
--raport-file
raport_1.json
python ./multiproc.py
--nproc_per_node
8 ./launch.py
--model
efficientnet-b4
--precision
AMP
--mode
benchmark_inference
--platform
DGXA100 /imagenet
-b
2
--workspace
${
1
:-
./
}
--raport-file
raport_2.json
python ./multiproc.py
--nproc_per_node
8 ./launch.py
--model
efficientnet-b4
--precision
AMP
--mode
benchmark_inference
--platform
DGXA100 /imagenet
-b
4
--workspace
${
1
:-
./
}
--raport-file
raport_4.json
python ./multiproc.py
--nproc_per_node
8 ./launch.py
--model
efficientnet-b4
--precision
AMP
--mode
benchmark_inference
--platform
DGXA100 /imagenet
-b
8
--workspace
${
1
:-
./
}
--raport-file
raport_8.json
python ./multiproc.py
--nproc_per_node
8 ./launch.py
--model
efficientnet-b4
--precision
AMP
--mode
benchmark_inference
--platform
DGXA100 /imagenet
-b
16
--workspace
${
1
:-
./
}
--raport-file
raport_16.json
python ./multiproc.py
--nproc_per_node
8 ./launch.py
--model
efficientnet-b4
--precision
AMP
--mode
benchmark_inference
--platform
DGXA100 /imagenet
-b
32
--workspace
${
1
:-
./
}
--raport-file
raport_32.json
python ./multiproc.py
--nproc_per_node
8 ./launch.py
--model
efficientnet-b4
--precision
AMP
--mode
benchmark_inference
--platform
DGXA100 /imagenet
-b
64
--workspace
${
1
:-
./
}
--raport-file
raport_64.json
python ./multiproc.py
--nproc_per_node
8 ./launch.py
--model
efficientnet-b4
--precision
AMP
--mode
benchmark_inference
--platform
DGXA100 /imagenet
-b
128
--workspace
${
1
:-
./
}
--raport-file
raport_128.json
python ./multiproc.py
--nproc_per_node
8 ./launch.py
--model
efficientnet-b4
--precision
AMP
--mode
benchmark_inference
--platform
DGXA100 /imagenet
-b
256
--workspace
${
1
:-
./
}
--raport-file
raport_256.json
efficientnet/inference/AMP/DGXA100_efficientnet-widese-b0_AMP.sh
0 → 100644
View file @
e129194a
python ./multiproc.py
--nproc_per_node
8 ./launch.py
--model
efficientnet-widese-b0
--precision
AMP
--mode
benchmark_inference
--platform
DGXA100 /imagenet
-b
1
--workspace
${
1
:-
./
}
--raport-file
raport_1.json
python ./multiproc.py
--nproc_per_node
8 ./launch.py
--model
efficientnet-widese-b0
--precision
AMP
--mode
benchmark_inference
--platform
DGXA100 /imagenet
-b
2
--workspace
${
1
:-
./
}
--raport-file
raport_2.json
python ./multiproc.py
--nproc_per_node
8 ./launch.py
--model
efficientnet-widese-b0
--precision
AMP
--mode
benchmark_inference
--platform
DGXA100 /imagenet
-b
4
--workspace
${
1
:-
./
}
--raport-file
raport_4.json
python ./multiproc.py
--nproc_per_node
8 ./launch.py
--model
efficientnet-widese-b0
--precision
AMP
--mode
benchmark_inference
--platform
DGXA100 /imagenet
-b
8
--workspace
${
1
:-
./
}
--raport-file
raport_8.json
python ./multiproc.py
--nproc_per_node
8 ./launch.py
--model
efficientnet-widese-b0
--precision
AMP
--mode
benchmark_inference
--platform
DGXA100 /imagenet
-b
16
--workspace
${
1
:-
./
}
--raport-file
raport_16.json
python ./multiproc.py
--nproc_per_node
8 ./launch.py
--model
efficientnet-widese-b0
--precision
AMP
--mode
benchmark_inference
--platform
DGXA100 /imagenet
-b
32
--workspace
${
1
:-
./
}
--raport-file
raport_32.json
python ./multiproc.py
--nproc_per_node
8 ./launch.py
--model
efficientnet-widese-b0
--precision
AMP
--mode
benchmark_inference
--platform
DGXA100 /imagenet
-b
64
--workspace
${
1
:-
./
}
--raport-file
raport_64.json
python ./multiproc.py
--nproc_per_node
8 ./launch.py
--model
efficientnet-widese-b0
--precision
AMP
--mode
benchmark_inference
--platform
DGXA100 /imagenet
-b
128
--workspace
${
1
:-
./
}
--raport-file
raport_128.json
python ./multiproc.py
--nproc_per_node
8 ./launch.py
--model
efficientnet-widese-b0
--precision
AMP
--mode
benchmark_inference
--platform
DGXA100 /imagenet
-b
256
--workspace
${
1
:-
./
}
--raport-file
raport_256.json
efficientnet/inference/AMP/DGXA100_efficientnet-widese-b4_AMP.sh
0 → 100644
View file @
e129194a
python ./multiproc.py
--nproc_per_node
8 ./launch.py
--model
efficientnet-widese-b4
--precision
AMP
--mode
benchmark_inference
--platform
DGXA100 /imagenet
-b
1
--workspace
${
1
:-
./
}
--raport-file
raport_1.json
python ./multiproc.py
--nproc_per_node
8 ./launch.py
--model
efficientnet-widese-b4
--precision
AMP
--mode
benchmark_inference
--platform
DGXA100 /imagenet
-b
2
--workspace
${
1
:-
./
}
--raport-file
raport_2.json
python ./multiproc.py
--nproc_per_node
8 ./launch.py
--model
efficientnet-widese-b4
--precision
AMP
--mode
benchmark_inference
--platform
DGXA100 /imagenet
-b
4
--workspace
${
1
:-
./
}
--raport-file
raport_4.json
python ./multiproc.py
--nproc_per_node
8 ./launch.py
--model
efficientnet-widese-b4
--precision
AMP
--mode
benchmark_inference
--platform
DGXA100 /imagenet
-b
8
--workspace
${
1
:-
./
}
--raport-file
raport_8.json
python ./multiproc.py
--nproc_per_node
8 ./launch.py
--model
efficientnet-widese-b4
--precision
AMP
--mode
benchmark_inference
--platform
DGXA100 /imagenet
-b
16
--workspace
${
1
:-
./
}
--raport-file
raport_16.json
python ./multiproc.py
--nproc_per_node
8 ./launch.py
--model
efficientnet-widese-b4
--precision
AMP
--mode
benchmark_inference
--platform
DGXA100 /imagenet
-b
32
--workspace
${
1
:-
./
}
--raport-file
raport_32.json
python ./multiproc.py
--nproc_per_node
8 ./launch.py
--model
efficientnet-widese-b4
--precision
AMP
--mode
benchmark_inference
--platform
DGXA100 /imagenet
-b
64
--workspace
${
1
:-
./
}
--raport-file
raport_64.json
python ./multiproc.py
--nproc_per_node
8 ./launch.py
--model
efficientnet-widese-b4
--precision
AMP
--mode
benchmark_inference
--platform
DGXA100 /imagenet
-b
128
--workspace
${
1
:-
./
}
--raport-file
raport_128.json
python ./multiproc.py
--nproc_per_node
8 ./launch.py
--model
efficientnet-widese-b4
--precision
AMP
--mode
benchmark_inference
--platform
DGXA100 /imagenet
-b
256
--workspace
${
1
:-
./
}
--raport-file
raport_256.json
efficientnet/inference/FP32/DGXA100_efficientnet-b0_FP32.sh
0 → 100644
View file @
e129194a
python ./multiproc.py
--nproc_per_node
8 ./launch.py
--model
efficientnet-b0
--precision
FP32
--mode
benchmark_inference
--platform
DGXA100 /imagenet
-b
1
--workspace
${
1
:-
./
}
--raport-file
raport_1.json
python ./multiproc.py
--nproc_per_node
8 ./launch.py
--model
efficientnet-b0
--precision
FP32
--mode
benchmark_inference
--platform
DGXA100 /imagenet
-b
2
--workspace
${
1
:-
./
}
--raport-file
raport_2.json
python ./multiproc.py
--nproc_per_node
8 ./launch.py
--model
efficientnet-b0
--precision
FP32
--mode
benchmark_inference
--platform
DGXA100 /imagenet
-b
4
--workspace
${
1
:-
./
}
--raport-file
raport_4.json
python ./multiproc.py
--nproc_per_node
8 ./launch.py
--model
efficientnet-b0
--precision
FP32
--mode
benchmark_inference
--platform
DGXA100 /imagenet
-b
8
--workspace
${
1
:-
./
}
--raport-file
raport_8.json
python ./multiproc.py
--nproc_per_node
8 ./launch.py
--model
efficientnet-b0
--precision
FP32
--mode
benchmark_inference
--platform
DGXA100 /imagenet
-b
16
--workspace
${
1
:-
./
}
--raport-file
raport_16.json
python ./multiproc.py
--nproc_per_node
8 ./launch.py
--model
efficientnet-b0
--precision
FP32
--mode
benchmark_inference
--platform
DGXA100 /imagenet
-b
32
--workspace
${
1
:-
./
}
--raport-file
raport_32.json
python ./multiproc.py
--nproc_per_node
8 ./launch.py
--model
efficientnet-b0
--precision
FP32
--mode
benchmark_inference
--platform
DGXA100 /imagenet
-b
64
--workspace
${
1
:-
./
}
--raport-file
raport_64.json
python ./multiproc.py
--nproc_per_node
8 ./launch.py
--model
efficientnet-b0
--precision
FP32
--mode
benchmark_inference
--platform
DGXA100 /imagenet
-b
128
--workspace
${
1
:-
./
}
--raport-file
raport_128.json
efficientnet/inference/FP32/DGXA100_efficientnet-b4_FP32.sh
0 → 100644
View file @
e129194a
python ./multiproc.py
--nproc_per_node
8 ./launch.py
--model
efficientnet-b4
--precision
FP32
--mode
benchmark_inference
--platform
DGXA100 /imagenet
-b
1
--workspace
${
1
:-
./
}
--raport-file
raport_1.json
python ./multiproc.py
--nproc_per_node
8 ./launch.py
--model
efficientnet-b4
--precision
FP32
--mode
benchmark_inference
--platform
DGXA100 /imagenet
-b
2
--workspace
${
1
:-
./
}
--raport-file
raport_2.json
python ./multiproc.py
--nproc_per_node
8 ./launch.py
--model
efficientnet-b4
--precision
FP32
--mode
benchmark_inference
--platform
DGXA100 /imagenet
-b
4
--workspace
${
1
:-
./
}
--raport-file
raport_4.json
python ./multiproc.py
--nproc_per_node
8 ./launch.py
--model
efficientnet-b4
--precision
FP32
--mode
benchmark_inference
--platform
DGXA100 /imagenet
-b
8
--workspace
${
1
:-
./
}
--raport-file
raport_8.json
python ./multiproc.py
--nproc_per_node
8 ./launch.py
--model
efficientnet-b4
--precision
FP32
--mode
benchmark_inference
--platform
DGXA100 /imagenet
-b
16
--workspace
${
1
:-
./
}
--raport-file
raport_16.json
python ./multiproc.py
--nproc_per_node
8 ./launch.py
--model
efficientnet-b4
--precision
FP32
--mode
benchmark_inference
--platform
DGXA100 /imagenet
-b
32
--workspace
${
1
:-
./
}
--raport-file
raport_32.json
python ./multiproc.py
--nproc_per_node
8 ./launch.py
--model
efficientnet-b4
--precision
FP32
--mode
benchmark_inference
--platform
DGXA100 /imagenet
-b
64
--workspace
${
1
:-
./
}
--raport-file
raport_64.json
python ./multiproc.py
--nproc_per_node
8 ./launch.py
--model
efficientnet-b4
--precision
FP32
--mode
benchmark_inference
--platform
DGXA100 /imagenet
-b
128
--workspace
${
1
:-
./
}
--raport-file
raport_128.json
efficientnet/inference/FP32/DGXA100_efficientnet-widese-b0_FP32.sh
0 → 100644
View file @
e129194a
python ./multiproc.py
--nproc_per_node
8 ./launch.py
--model
efficientnet-widese-b0
--precision
FP32
--mode
benchmark_inference
--platform
DGXA100 /imagenet
-b
1
--workspace
${
1
:-
./
}
--raport-file
raport_1.json
python ./multiproc.py
--nproc_per_node
8 ./launch.py
--model
efficientnet-widese-b0
--precision
FP32
--mode
benchmark_inference
--platform
DGXA100 /imagenet
-b
2
--workspace
${
1
:-
./
}
--raport-file
raport_2.json
python ./multiproc.py
--nproc_per_node
8 ./launch.py
--model
efficientnet-widese-b0
--precision
FP32
--mode
benchmark_inference
--platform
DGXA100 /imagenet
-b
4
--workspace
${
1
:-
./
}
--raport-file
raport_4.json
python ./multiproc.py
--nproc_per_node
8 ./launch.py
--model
efficientnet-widese-b0
--precision
FP32
--mode
benchmark_inference
--platform
DGXA100 /imagenet
-b
8
--workspace
${
1
:-
./
}
--raport-file
raport_8.json
python ./multiproc.py
--nproc_per_node
8 ./launch.py
--model
efficientnet-widese-b0
--precision
FP32
--mode
benchmark_inference
--platform
DGXA100 /imagenet
-b
16
--workspace
${
1
:-
./
}
--raport-file
raport_16.json
python ./multiproc.py
--nproc_per_node
8 ./launch.py
--model
efficientnet-widese-b0
--precision
FP32
--mode
benchmark_inference
--platform
DGXA100 /imagenet
-b
32
--workspace
${
1
:-
./
}
--raport-file
raport_32.json
python ./multiproc.py
--nproc_per_node
8 ./launch.py
--model
efficientnet-widese-b0
--precision
FP32
--mode
benchmark_inference
--platform
DGXA100 /imagenet
-b
64
--workspace
${
1
:-
./
}
--raport-file
raport_64.json
python ./multiproc.py
--nproc_per_node
8 ./launch.py
--model
efficientnet-widese-b0
--precision
FP32
--mode
benchmark_inference
--platform
DGXA100 /imagenet
-b
128
--workspace
${
1
:-
./
}
--raport-file
raport_128.json
efficientnet/inference/FP32/DGXA100_efficientnet-widese-b4_FP32.sh
0 → 100644
View file @
e129194a
python ./multiproc.py
--nproc_per_node
8 ./launch.py
--model
efficientnet-widese-b4
--precision
FP32
--mode
benchmark_inference
--platform
DGXA100 /imagenet
-b
1
--workspace
${
1
:-
./
}
--raport-file
raport_1.json
python ./multiproc.py
--nproc_per_node
8 ./launch.py
--model
efficientnet-widese-b4
--precision
FP32
--mode
benchmark_inference
--platform
DGXA100 /imagenet
-b
2
--workspace
${
1
:-
./
}
--raport-file
raport_2.json
python ./multiproc.py
--nproc_per_node
8 ./launch.py
--model
efficientnet-widese-b4
--precision
FP32
--mode
benchmark_inference
--platform
DGXA100 /imagenet
-b
4
--workspace
${
1
:-
./
}
--raport-file
raport_4.json
python ./multiproc.py
--nproc_per_node
8 ./launch.py
--model
efficientnet-widese-b4
--precision
FP32
--mode
benchmark_inference
--platform
DGXA100 /imagenet
-b
8
--workspace
${
1
:-
./
}
--raport-file
raport_8.json
python ./multiproc.py
--nproc_per_node
8 ./launch.py
--model
efficientnet-widese-b4
--precision
FP32
--mode
benchmark_inference
--platform
DGXA100 /imagenet
-b
16
--workspace
${
1
:-
./
}
--raport-file
raport_16.json
python ./multiproc.py
--nproc_per_node
8 ./launch.py
--model
efficientnet-widese-b4
--precision
FP32
--mode
benchmark_inference
--platform
DGXA100 /imagenet
-b
32
--workspace
${
1
:-
./
}
--raport-file
raport_32.json
python ./multiproc.py
--nproc_per_node
8 ./launch.py
--model
efficientnet-widese-b4
--precision
FP32
--mode
benchmark_inference
--platform
DGXA100 /imagenet
-b
64
--workspace
${
1
:-
./
}
--raport-file
raport_64.json
python ./multiproc.py
--nproc_per_node
8 ./launch.py
--model
efficientnet-widese-b4
--precision
FP32
--mode
benchmark_inference
--platform
DGXA100 /imagenet
-b
128
--workspace
${
1
:-
./
}
--raport-file
raport_128.json
efficientnet/inference/TF32/DGXA100_efficientnet-b0_TF32.sh
0 → 100644
View file @
e129194a
python ./multiproc.py
--nproc_per_node
8 ./launch.py
--model
efficientnet-b0
--precision
TF32
--mode
benchmark_inference
--platform
DGXA100 /imagenet
-b
1
--workspace
${
1
:-
./
}
--raport-file
raport_1.json
python ./multiproc.py
--nproc_per_node
8 ./launch.py
--model
efficientnet-b0
--precision
TF32
--mode
benchmark_inference
--platform
DGXA100 /imagenet
-b
2
--workspace
${
1
:-
./
}
--raport-file
raport_2.json
python ./multiproc.py
--nproc_per_node
8 ./launch.py
--model
efficientnet-b0
--precision
TF32
--mode
benchmark_inference
--platform
DGXA100 /imagenet
-b
4
--workspace
${
1
:-
./
}
--raport-file
raport_4.json
python ./multiproc.py
--nproc_per_node
8 ./launch.py
--model
efficientnet-b0
--precision
TF32
--mode
benchmark_inference
--platform
DGXA100 /imagenet
-b
8
--workspace
${
1
:-
./
}
--raport-file
raport_8.json
python ./multiproc.py
--nproc_per_node
8 ./launch.py
--model
efficientnet-b0
--precision
TF32
--mode
benchmark_inference
--platform
DGXA100 /imagenet
-b
16
--workspace
${
1
:-
./
}
--raport-file
raport_16.json
python ./multiproc.py
--nproc_per_node
8 ./launch.py
--model
efficientnet-b0
--precision
TF32
--mode
benchmark_inference
--platform
DGXA100 /imagenet
-b
32
--workspace
${
1
:-
./
}
--raport-file
raport_32.json
python ./multiproc.py
--nproc_per_node
8 ./launch.py
--model
efficientnet-b0
--precision
TF32
--mode
benchmark_inference
--platform
DGXA100 /imagenet
-b
64
--workspace
${
1
:-
./
}
--raport-file
raport_64.json
python ./multiproc.py
--nproc_per_node
8 ./launch.py
--model
efficientnet-b0
--precision
TF32
--mode
benchmark_inference
--platform
DGXA100 /imagenet
-b
128
--workspace
${
1
:-
./
}
--raport-file
raport_128.json
python ./multiproc.py
--nproc_per_node
8 ./launch.py
--model
efficientnet-b0
--precision
TF32
--mode
benchmark_inference
--platform
DGXA100 /imagenet
-b
256
--workspace
${
1
:-
./
}
--raport-file
raport_256.json
efficientnet/inference/TF32/DGXA100_efficientnet-b4_TF32.sh
0 → 100644
View file @
e129194a
python ./multiproc.py
--nproc_per_node
8 ./launch.py
--model
efficientnet-b4
--precision
TF32
--mode
benchmark_inference
--platform
DGXA100 /imagenet
-b
1
--workspace
${
1
:-
./
}
--raport-file
raport_1.json
python ./multiproc.py
--nproc_per_node
8 ./launch.py
--model
efficientnet-b4
--precision
TF32
--mode
benchmark_inference
--platform
DGXA100 /imagenet
-b
2
--workspace
${
1
:-
./
}
--raport-file
raport_2.json
python ./multiproc.py
--nproc_per_node
8 ./launch.py
--model
efficientnet-b4
--precision
TF32
--mode
benchmark_inference
--platform
DGXA100 /imagenet
-b
4
--workspace
${
1
:-
./
}
--raport-file
raport_4.json
python ./multiproc.py
--nproc_per_node
8 ./launch.py
--model
efficientnet-b4
--precision
TF32
--mode
benchmark_inference
--platform
DGXA100 /imagenet
-b
8
--workspace
${
1
:-
./
}
--raport-file
raport_8.json
python ./multiproc.py
--nproc_per_node
8 ./launch.py
--model
efficientnet-b4
--precision
TF32
--mode
benchmark_inference
--platform
DGXA100 /imagenet
-b
16
--workspace
${
1
:-
./
}
--raport-file
raport_16.json
python ./multiproc.py
--nproc_per_node
8 ./launch.py
--model
efficientnet-b4
--precision
TF32
--mode
benchmark_inference
--platform
DGXA100 /imagenet
-b
32
--workspace
${
1
:-
./
}
--raport-file
raport_32.json
python ./multiproc.py
--nproc_per_node
8 ./launch.py
--model
efficientnet-b4
--precision
TF32
--mode
benchmark_inference
--platform
DGXA100 /imagenet
-b
64
--workspace
${
1
:-
./
}
--raport-file
raport_64.json
python ./multiproc.py
--nproc_per_node
8 ./launch.py
--model
efficientnet-b4
--precision
TF32
--mode
benchmark_inference
--platform
DGXA100 /imagenet
-b
128
--workspace
${
1
:-
./
}
--raport-file
raport_128.json
python ./multiproc.py
--nproc_per_node
8 ./launch.py
--model
efficientnet-b4
--precision
TF32
--mode
benchmark_inference
--platform
DGXA100 /imagenet
-b
256
--workspace
${
1
:-
./
}
--raport-file
raport_256.json
efficientnet/inference/TF32/DGXA100_efficientnet-widese-b0_TF32.sh
0 → 100644
View file @
e129194a
python ./multiproc.py
--nproc_per_node
8 ./launch.py
--model
efficientnet-widese-b0
--precision
TF32
--mode
benchmark_inference
--platform
DGXA100 /imagenet
-b
1
--workspace
${
1
:-
./
}
--raport-file
raport_1.json
python ./multiproc.py
--nproc_per_node
8 ./launch.py
--model
efficientnet-widese-b0
--precision
TF32
--mode
benchmark_inference
--platform
DGXA100 /imagenet
-b
2
--workspace
${
1
:-
./
}
--raport-file
raport_2.json
python ./multiproc.py
--nproc_per_node
8 ./launch.py
--model
efficientnet-widese-b0
--precision
TF32
--mode
benchmark_inference
--platform
DGXA100 /imagenet
-b
4
--workspace
${
1
:-
./
}
--raport-file
raport_4.json
python ./multiproc.py
--nproc_per_node
8 ./launch.py
--model
efficientnet-widese-b0
--precision
TF32
--mode
benchmark_inference
--platform
DGXA100 /imagenet
-b
8
--workspace
${
1
:-
./
}
--raport-file
raport_8.json
python ./multiproc.py
--nproc_per_node
8 ./launch.py
--model
efficientnet-widese-b0
--precision
TF32
--mode
benchmark_inference
--platform
DGXA100 /imagenet
-b
16
--workspace
${
1
:-
./
}
--raport-file
raport_16.json
python ./multiproc.py
--nproc_per_node
8 ./launch.py
--model
efficientnet-widese-b0
--precision
TF32
--mode
benchmark_inference
--platform
DGXA100 /imagenet
-b
32
--workspace
${
1
:-
./
}
--raport-file
raport_32.json
python ./multiproc.py
--nproc_per_node
8 ./launch.py
--model
efficientnet-widese-b0
--precision
TF32
--mode
benchmark_inference
--platform
DGXA100 /imagenet
-b
64
--workspace
${
1
:-
./
}
--raport-file
raport_64.json
python ./multiproc.py
--nproc_per_node
8 ./launch.py
--model
efficientnet-widese-b0
--precision
TF32
--mode
benchmark_inference
--platform
DGXA100 /imagenet
-b
128
--workspace
${
1
:-
./
}
--raport-file
raport_128.json
python ./multiproc.py
--nproc_per_node
8 ./launch.py
--model
efficientnet-widese-b0
--precision
TF32
--mode
benchmark_inference
--platform
DGXA100 /imagenet
-b
256
--workspace
${
1
:-
./
}
--raport-file
raport_256.json
efficientnet/inference/TF32/DGXA100_efficientnet-widese-b4_TF32.sh
0 → 100644
View file @
e129194a
python ./multiproc.py
--nproc_per_node
8 ./launch.py
--model
efficientnet-widese-b4
--precision
TF32
--mode
benchmark_inference
--platform
DGXA100 /imagenet
-b
1
--workspace
${
1
:-
./
}
--raport-file
raport_1.json
python ./multiproc.py
--nproc_per_node
8 ./launch.py
--model
efficientnet-widese-b4
--precision
TF32
--mode
benchmark_inference
--platform
DGXA100 /imagenet
-b
2
--workspace
${
1
:-
./
}
--raport-file
raport_2.json
python ./multiproc.py
--nproc_per_node
8 ./launch.py
--model
efficientnet-widese-b4
--precision
TF32
--mode
benchmark_inference
--platform
DGXA100 /imagenet
-b
4
--workspace
${
1
:-
./
}
--raport-file
raport_4.json
python ./multiproc.py
--nproc_per_node
8 ./launch.py
--model
efficientnet-widese-b4
--precision
TF32
--mode
benchmark_inference
--platform
DGXA100 /imagenet
-b
8
--workspace
${
1
:-
./
}
--raport-file
raport_8.json
python ./multiproc.py
--nproc_per_node
8 ./launch.py
--model
efficientnet-widese-b4
--precision
TF32
--mode
benchmark_inference
--platform
DGXA100 /imagenet
-b
16
--workspace
${
1
:-
./
}
--raport-file
raport_16.json
python ./multiproc.py
--nproc_per_node
8 ./launch.py
--model
efficientnet-widese-b4
--precision
TF32
--mode
benchmark_inference
--platform
DGXA100 /imagenet
-b
32
--workspace
${
1
:-
./
}
--raport-file
raport_32.json
python ./multiproc.py
--nproc_per_node
8 ./launch.py
--model
efficientnet-widese-b4
--precision
TF32
--mode
benchmark_inference
--platform
DGXA100 /imagenet
-b
64
--workspace
${
1
:-
./
}
--raport-file
raport_64.json
python ./multiproc.py
--nproc_per_node
8 ./launch.py
--model
efficientnet-widese-b4
--precision
TF32
--mode
benchmark_inference
--platform
DGXA100 /imagenet
-b
128
--workspace
${
1
:-
./
}
--raport-file
raport_128.json
python ./multiproc.py
--nproc_per_node
8 ./launch.py
--model
efficientnet-widese-b4
--precision
TF32
--mode
benchmark_inference
--platform
DGXA100 /imagenet
-b
256
--workspace
${
1
:-
./
}
--raport-file
raport_256.json
efficientnet/quantization/DGX1V-32G_efficientnet-quant-b0_FP32.sh
0 → 100644
View file @
e129194a
python ./multiproc.py
\
--nproc_per_node
8
\
./quant_main.py /imagenet
\
--arch
efficientnet-quant-b0
\
--epochs
10
\
-j5
-p
500
\
--data-backend
pytorch
\
--optimizer
sgd
\
-b
128
\
--lr
0.0125
\
--momentum
0.89
\
--weight-decay
4.50e-05
\
--lr-schedule
cosine
\
--pretrained-from-file
"
${
1
}
"
\ No newline at end of file
efficientnet/quantization/DGX1V-32G_efficientnet-quant-b4_FP32.sh
0 → 100644
View file @
e129194a
python ./multiproc.py
\
--nproc_per_node
8
\
./quant_main.py /imagenet
\
--arch
efficientnet-quant-b4
\
--epochs
2
\
-j5
-p
500
\
--data-backend
pytorch
\
--optimizer
rmsprop
\
-b
32
\
--lr
4.09e-06
\
--momentum
0.9
\
--weight-decay
9.714e-04
\
--lr-schedule
linear
\
--rmsprop-alpha
0.853
\
--rmsprop-eps
0.00422
\
--pretrained-from-file
"
${
1
}
"
efficientnet/training/AMP/DGX1V-16G_efficientnet-b0_AMP.sh
0 → 100644
View file @
e129194a
python ./multiproc.py
--nproc_per_node
8 ./launch.py
--model
efficientnet-b0
--precision
AMP
--mode
convergence
--platform
DGX1V-16G /imagenet
--workspace
${
1
:-
./
}
--raport-file
raport.json
efficientnet/training/AMP/DGX1V-16G_efficientnet-widese-b0_AMP.sh
0 → 100644
View file @
e129194a
python ./multiproc.py
--nproc_per_node
8 ./launch.py
--model
efficientnet-widese-b0
--precision
AMP
--mode
convergence
--platform
DGX1V-16G /imagenet
--workspace
${
1
:-
./
}
--raport-file
raport.json
efficientnet/training/AMP/DGXA100_efficientnet-b0_AMP.sh
0 → 100644
View file @
e129194a
python ./multiproc.py
--nproc_per_node
8 ./launch.py
--model
efficientnet-b0
--precision
AMP
--mode
convergence
--platform
DGXA100 /imagenet
--workspace
${
1
:-
./
}
--raport-file
raport.json
efficientnet/training/AMP/DGXA100_efficientnet-b4_AMP.sh
0 → 100644
View file @
e129194a
python ./multiproc.py
--nproc_per_node
8 ./launch.py
--model
efficientnet-b4
--precision
AMP
--mode
convergence
--platform
DGXA100 /imagenet
--workspace
${
1
:-
./
}
--raport-file
raport.json
efficientnet/training/AMP/DGXA100_efficientnet-widese-b0_AMP.sh
0 → 100644
View file @
e129194a
python ./multiproc.py
--nproc_per_node
8 ./launch.py
--model
efficientnet-widese-b0
--precision
AMP
--mode
convergence
--platform
DGXA100 /imagenet
--workspace
${
1
:-
./
}
--raport-file
raport.json
efficientnet/training/AMP/DGXA100_efficientnet-widese-b4_AMP.sh
0 → 100644
View file @
e129194a
python ./multiproc.py
--nproc_per_node
8 ./launch.py
--model
efficientnet-widese-b4
--precision
AMP
--mode
convergence
--platform
DGXA100 /imagenet
--workspace
${
1
:-
./
}
--raport-file
raport.json
efficientnet/training/FP32/DGX1V-16G_efficientnet-b0_FP32.sh
0 → 100644
View file @
e129194a
python ./multiproc.py
--nproc_per_node
8 ./launch.py
--model
efficientnet-b0
--precision
FP32
--mode
convergence
--platform
DGX1V-16G /imagenet
--workspace
${
1
:-
./
}
--raport-file
raport.json
Prev
1
2
3
4
5
6
…
10
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment