README.md 36.3 KB
Newer Older
Sugon_ldc's avatar
Sugon_ldc committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
# ResNet50 v1.5 For PyTorch

This repository provides a script and recipe to train the ResNet50 model to
achieve state-of-the-art accuracy, and is tested and maintained by NVIDIA.

## Table Of Contents

* [Model overview](#model-overview)
  * [Default configuration](#default-configuration)
    * [Optimizer](#optimizer)
    * [Data augmentation](#data-augmentation)
  * [DALI](#dali)
  * [Feature support matrix](#feature-support-matrix)
    * [Features](#features)
  * [Mixed precision training](#mixed-precision-training)
    * [Enabling mixed precision](#enabling-mixed-precision)
    * [Enabling TF32](#enabling-tf32)
* [Setup](#setup)
  * [Requirements](#requirements)
* [Quick Start Guide](#quick-start-guide)
* [Advanced](#advanced)
  * [Scripts and sample code](#scripts-and-sample-code)
  * [Command-line options](#command-line-options)
  * [Dataset guidelines](#dataset-guidelines)
  * [Training process](#training-process)
  * [Inference process](#inference-process)
* [Performance](#performance)
  * [Benchmarking](#benchmarking)
    * [Training performance benchmark](#training-performance-benchmark)
    * [Inference performance benchmark](#inference-performance-benchmark)
  * [Results](#results)
    * [Training accuracy results](#training-accuracy-results)
      * [Training accuracy: NVIDIA DGX A100 (8x A100 80GB)](#training-accuracy-nvidia-dgx-a100-8x-a100-80gb)
      * [Training accuracy: NVIDIA DGX-1 (8x V100 16GB)](#training-accuracy-nvidia-dgx-1-8x-v100-16gb)
      * [Training accuracy: NVIDIA DGX-2 (16x V100 32GB)](#training-accuracy-nvidia-dgx-2-16x-v100-32gb)
      * [Example plots](#example-plots)
    * [Training performance results](#training-performance-results)
      * [Training performance: NVIDIA DGX A100 (8x A100 80GB)](#training-performance-nvidia-dgx-a100-8x-a100-80gb)
      * [Training performance: NVIDIA DGX-1 16GB (8x V100 16GB)](#training-performance-nvidia-dgx-1-16gb-8x-v100-16gb)
      * [Training performance: NVIDIA DGX-1 32GB (8x V100 32GB)](#training-performance-nvidia-dgx-1-32gb-8x-v100-32gb)
  * [Inference performance results](#inference-performance-results)
      * [Inference performance: NVIDIA DGX-1 16GB (1x V100 16GB)](#inference-performance-nvidia-dgx-1-1x-v100-16gb)
      * [Inference performance: NVIDIA T4](#inference-performance-nvidia-t4)
* [Release notes](#release-notes)
  * [Changelog](#changelog)
  * [Known issues](#known-issues)

## Model overview
The ResNet50 v1.5 model is a modified version of the [original ResNet50 v1 model](https://arxiv.org/abs/1512.03385).

The difference between v1 and v1.5 is that, in the bottleneck blocks which requires
downsampling, v1 has stride = 2 in the first 1x1 convolution, whereas v1.5 has stride = 2 in the 3x3 convolution.

This difference makes ResNet50 v1.5 slightly more accurate (~0.5% top1) than v1, but comes with a smallperformance drawback (~5% imgs/sec).

The model is initialized as described in [Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification](https://arxiv.org/pdf/1502.01852.pdf)

This model is trained with mixed precision using Tensor Cores on Volta, Turing, and the NVIDIA Ampere GPU architectures. Therefore, researchers can get results over 2x faster than training without Tensor Cores, while experiencing the benefits of mixed precision training. This model is tested against each NGC monthly container release to ensure consistent accuracy and performance over time.

We are currently working on adding [NHWC data layout](https://pytorch.org/tutorials/intermediate/memory_format_tutorial.html) support for Mixed Precision training.

### Default configuration

The following sections highlight the default configurations for the ResNet50 model.

#### Optimizer

This model uses SGD with momentum optimizer with the following hyperparameters:

* Momentum (0.875)
* Learning rate (LR) = 0.256 for 256 batch size, for other batch sizes we linearly
scale the learning rate.
* Learning rate schedule - we use cosine LR schedule
* For bigger batch sizes (512 and up) we use linear warmup of the learning rate
during the first couple of epochs
according to [Training ImageNet in 1 hour](https://arxiv.org/abs/1706.02677).
Warmup length depends on the total training length.
* Weight decay (WD)= 3.0517578125e-05 (1/32768).
* We do not apply WD on Batch Norm trainable parameters (gamma/bias)
* Label smoothing = 0.1
* We train for:
    * 50 Epochs -> configuration that reaches 75.9% top1 accuracy
    * 90 Epochs -> 90 epochs is a standard for ImageNet networks
    * 250 Epochs -> best possible accuracy.
* For 250 epoch training we also use [MixUp regularization](https://arxiv.org/pdf/1710.09412.pdf).


#### Data augmentation

This model uses the following data augmentation:

* For training:
  * Normalization
  * Random resized crop to 224x224
    * Scale from 8% to 100%
    * Aspect ratio from 3/4 to 4/3
  * Random horizontal flip
* For inference:
  * Normalization
  * Scale to 256x256
  * Center crop to 224x224

#### Other training recipes

This script does not target any specific benchmark.
There are changes that others have made which can speed up convergence and/or increase accuracy.

One of the more popular training recipes is provided by [fast.ai](https://github.com/fastai/imagenet-fast).

The fast.ai recipe introduces many changes to the training procedure, one of which is progressive resizing of the training images.

The first part of training uses 128px images, the middle part uses 224px images, and the last part uses 288px images.
The final validation is performed on 288px images.

Training script in this repository performs validation on 224px images, just like the original paper described.

These two approaches can't be directly compared, since the fast.ai recipe requires validation on 288px images,
and this recipe keeps the original assumption that validation is done on 224px images.

Using 288px images means that a lot more FLOPs are needed during inference to reach the same accuracy.



### Feature support matrix

The following features are supported by this model:

| Feature               | ResNet50
|-----------------------|--------------------------
|[DALI](https://docs.nvidia.com/deeplearning/sdk/dali-release-notes/index.html)   |   Yes
|[APEX AMP](https://nvidia.github.io/apex/amp.html) | Yes |

#### Features

- NVIDIA DALI - DALI is a library accelerating data preparation pipeline. To accelerate your input pipeline, you only need to define your data loader
with the DALI library. For more information about DALI, refer to the [DALI product documentation](https://docs.nvidia.com/deeplearning/dali/user-guide/docs/index.html).

- [APEX](https://github.com/NVIDIA/apex) is a PyTorch extension that contains utility libraries, such as [Automatic Mixed Precision (AMP)](https://nvidia.github.io/apex/amp.html), which require minimal network code changes to leverage Tensor Cores performance. Refer to the [Enabling mixed precision](#enabling-mixed-precision) section for more details.

### DALI

We use [NVIDIA DALI](https://github.com/NVIDIA/DALI),
which speeds up data loading when CPU becomes a bottleneck.
DALI can use CPU or GPU, and outperforms the PyTorch native dataloader.

Run training with `--data-backends dali-gpu` or `--data-backends dali-cpu` to enable DALI.
For DGXA100 and DGX1 we recommend `--data-backends dali-cpu`, for DGX2 we recommend `--data-backends dali-gpu`.

### Mixed precision training

Mixed precision is the combined use of different numerical precisions in a computational method. [Mixed precision](https://arxiv.org/abs/1710.03740) training offers significant computational speedup by performing operations in half-precision format, while storing minimal information in single-precision to retain as much information as possible in critical parts of the network. Since the introduction of [Tensor Cores](https://developer.nvidia.com/tensor-cores) in Volta, and following with both the Turing and Ampere architectures, significant training speedups are experienced by switching to mixed precision -- up to 3x overall speedup on the most arithmetically intense model architectures. Using mixed precision training requires two steps:
1.  Porting the model to use the FP16 data type where appropriate.
2.  Adding loss scaling to preserve small gradient values.

The ability to train deep learning networks with lower precision was introduced in the Pascal architecture and first supported in CUDA 8 in the NVIDIA Deep Learning SDK.

For information about:
-   How to train using mixed precision, see the [Mixed Precision Training](https://arxiv.org/abs/1710.03740) paper and [Training With Mixed Precision](https://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/index.html) documentation.
-   Techniques used for mixed precision training, see the [Mixed-Precision Training of Deep Neural Networks](https://devblogs.nvidia.com/mixed-precision-training-deep-neural-networks/) blog.
-   APEX tools for mixed precision training, see the [NVIDIA Apex: Tools for Easy Mixed-Precision Training in PyTorch](https://devblogs.nvidia.com/apex-pytorch-easy-mixed-precision-training/).

#### Enabling mixed precision

Mixed precision is enabled in PyTorch by using the Automatic Mixed Precision (AMP), a library from [APEX](https://github.com/NVIDIA/apex) that casts variables to half-precision upon retrieval,
while storing variables in single-precision format. Furthermore, to preserve small gradient magnitudes in backpropagation, a [loss scaling](https://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/index.html#lossscaling) step must be included when applying gradients.
In PyTorch, loss scaling can be easily applied by using scale_loss() method provided by AMP. The scaling value to be used can be [dynamic](https://nvidia.github.io/apex/fp16_utils.html#apex.fp16_utils.DynamicLossScaler) or fixed.

For an in-depth walk through on AMP, check out sample usage [here](https://github.com/NVIDIA/apex/tree/master/apex/amp#usage-and-getting-started). [APEX](https://github.com/NVIDIA/apex) is a PyTorch extension that contains utility libraries, such as AMP, which require minimal network code changes to leverage tensor cores performance.

To enable mixed precision, you can:
- Import AMP from APEX:

  ```python
  from apex import amp
  ```

- Wrap model and optimizer in amp.initialize:

  ```python
  model, optimizer = amp.initialize(model, optimizer, opt_level="O1", loss_scale="dynamic")
  ```

- Scale loss before backpropagation:
  ```python
  with amp.scale_loss(loss, optimizer) as scaled_loss:
    scaled_loss.backward()
  ```

#### Enabling TF32

TensorFloat-32 (TF32) is the new math mode in [NVIDIA A100](https://www.nvidia.com/en-us/data-center/a100/) GPUs for handling the matrix math also called tensor operations. TF32 running on Tensor Cores in A100 GPUs can provide up to 10x speedups compared to single-precision floating-point math (FP32) on Volta GPUs. 

TF32 Tensor Cores can speed up networks using FP32, typically with no loss of accuracy. It is more robust than FP16 for models which require high dynamic range for weights or activations.

For more information, refer to the [TensorFloat-32 in the A100 GPU Accelerates AI Training, HPC up to 20x](https://blogs.nvidia.com/blog/2020/05/14/tensorfloat-32-precision-format/) blog post.

TF32 is supported in the NVIDIA Ampere GPU architecture and is enabled by default.


## Setup

The following section lists the requirements that you need to meet in order to start training the ResNet50 model.

### Requirements

This repository contains Dockerfile which extends the PyTorch NGC container and encapsulates some dependencies. Aside from these dependencies, ensure you have the following components:

* [NVIDIA Docker](https://github.com/NVIDIA/nvidia-docker)
* [PyTorch 21.03-py3 NGC container](https://ngc.nvidia.com/registry/nvidia-pytorch) or newer
* Supported GPUs:
    * [NVIDIA Volta architecture](https://www.nvidia.com/en-us/data-center/volta-gpu-architecture/)
    * [NVIDIA Turing architecture](https://www.nvidia.com/en-us/geforce/turing/)
    * [NVIDIA Ampere architecture](https://www.nvidia.com/en-us/data-center/nvidia-ampere-gpu-architecture/)

For more information about how to get started with NGC containers, see the
following sections from the NVIDIA GPU Cloud Documentation and the Deep Learning
DGX Documentation:
* [Getting Started Using NVIDIA GPU Cloud](https://docs.nvidia.com/ngc/ngc-getting-started-guide/index.html)
* [Accessing And Pulling From The NGC Container Registry](https://docs.nvidia.com/deeplearning/dgx/user-guide/index.html#accessing_registry)
* [Running PyTorch](https://docs.nvidia.com/deeplearning/dgx/pytorch-release-notes/running.html#running)

For those unable to use the PyTorch NGC container, to set up the required environment or create your own container, see the versioned [NVIDIA Container Support Matrix](https://docs.nvidia.com/deeplearning/frameworks/support-matrix/index.html).

## Quick Start Guide

### 1. Clone the repository.
```
git clone https://github.com/NVIDIA/DeepLearningExamples
cd DeepLearningExamples/PyTorch/Classification/
```

### 2. Download and preprocess the dataset.

The ResNet50 script operates on ImageNet 1k, a widely popular image classification dataset from the ILSVRC challenge.

PyTorch can work directly on JPEGs, therefore, preprocessing/augmentation is not needed.

To train your model using mixed or TF32 precision with Tensor Cores or using FP32,
perform the following steps using the default parameters of the resnet50 model on the ImageNet dataset.
For the specifics concerning training and inference, see the [Advanced](#advanced) section.


1. [Download the images](http://image-net.org/download-images).

2. Extract the training data:
  ```bash
  mkdir train && mv ILSVRC2012_img_train.tar train/ && cd train
  tar -xvf ILSVRC2012_img_train.tar && rm -f ILSVRC2012_img_train.tar
  find . -name "*.tar" | while read NAME ; do mkdir -p "${NAME%.tar}"; tar -xvf "${NAME}" -C "${NAME%.tar}"; rm -f "${NAME}"; done
  cd ..
  ```

3. Extract the validation data and move the images to subfolders:
  ```bash
  mkdir val && mv ILSVRC2012_img_val.tar val/ && cd val && tar -xvf ILSVRC2012_img_val.tar
  wget -qO- https://raw.githubusercontent.com/soumith/imagenetloader.torch/master/valprep.sh | bash
  ```

The directory in which the `train/` and `val/` directories are placed, is referred to as `<path to imagenet>` in this document.

### 3. Build the ResNet50 PyTorch NGC container.

```
docker build . -t nvidia_resnet50
```

### 4. Start an interactive session in the NGC container to run training/inference.
```
nvidia-docker run --rm -it -v <path to imagenet>:/imagenet --ipc=host nvidia_resnet50
```


### 5. Start training

To run training for a standard configuration (DGXA100/DGX1V/DGX2V, AMP/TF32/FP32, 90/250 Epochs),
run one of the scripts in the `./resnet50v1.5/training` directory
called `./resnet50v1.5/training/{AMP, TF32, FP32}/{ DGXA100, DGX1V, DGX2V }_resnet50_{AMP, TF32, FP32}_{ 90, 250 }E.sh`.

Ensure ImageNet is mounted in the `/imagenet` directory.

Example:
    `bash ./resnet50v1.5/training/AMP/DGX1_resnet50_AMP_250E.sh <path were to store checkpoints and logs>`

### 6. Start inference

You can download pretrained weights from NGC:

```bash
wget --content-disposition https://api.ngc.nvidia.com/v2/models/nvidia/resnet50_pyt_amp/versions/20.06.0/zip -O resnet50_pyt_amp_20.06.0.zip

unzip resnet50_pyt_amp_20.06.0.zip
```

To run inference on ImageNet, run:

`python ./main.py --arch resnet50 --evaluate --epochs 1 --pretrained-from-file nvidia_resnet50_200821.pth.tar -b <batch size> <path to imagenet>`

To run inference on JPEG image using pretrained weights:

`python classify.py --arch resnet50 --pretrained-from-file nvidia_resnet50_200821.pth.tar --precision AMP|FP32 --image <path to JPEG image>`


## Advanced

The following sections provide greater details of the dataset, running training and inference, and the training results.

### Scripts and sample code

To run a non standard configuration use:

* For 1 GPU
    * FP32
        `python ./main.py --arch resnet50 -c fanin --label-smoothing 0.1 <path to imagenet>`
        `python ./main.py --arch resnet50 -c fanin --label-smoothing 0.1 --amp --static-loss-scale 256 <path to imagenet>`

* For multiple GPUs
    * FP32
        `python ./multiproc.py --nproc_per_node 8 ./main.py --arch resnet50 -c fanin --label-smoothing 0.1 <path to imagenet>`
    * AMP
        `python ./multiproc.py --nproc_per_node 8 ./main.py --arch resnet50 -c fanin --label-smoothing 0.1 --amp --static-loss-scale 256 <path to imagenet>`

Use `python ./main.py -h` to obtain the list of available options in the `main.py` script.


### Command-line options:

To see the full list of available options and their descriptions, use the `-h` or `--help` command-line option, for example:

`python main.py -h`


```
usage: main.py [-h] [--data-backend BACKEND] [--arch ARCH]
               [--model-config CONF] [-j N] [--epochs N]
               [--run-epochs N] [-b N] [--optimizer-batch-size N] [--lr LR]
               [--lr-schedule SCHEDULE] [--warmup E] [--label-smoothing S]
               [--mixup ALPHA] [--momentum M] [--weight-decay W]
               [--bn-weight-decay] [--nesterov] [--print-freq N]
               [--resume PATH] [--pretrained-from-file PATH]
               [--static-loss-scale STATIC_LOSS_SCALE] [--dynamic-loss-scale]
               [--prof N] [--amp] [--seed SEED] [--gather-checkpoints]
               [--raport-file RAPORT_FILE] [--evaluate] [--training-only]
               [--no-checkpoints] [--checkpoint-filename CHECKPOINT_FILENAME]
               [--workspace DIR] [--memory-format {nchw,nhwc}]
               DIR

PyTorch ImageNet Training

positional arguments:
  DIR                   path to dataset

optional arguments:
  -h, --help            show this help message and exit
  --data-backend BACKEND
                        data backend: pytorch | synthetic | dali-gpu | dali-cpu
                        (default: dali-cpu)
  --arch ARCH, -a ARCH  model architecture: resnet18 | resnet34 | resnet50 |
                        resnet101 | resnet152 | resnext50-32x4d |
                        resnext101-32x4d | resnext101-32x8d |
                        resnext101-32x8d-basic | se-resnext101-32x4d (default:
                        resnet50)
  --model-config CONF, -c CONF
                        model configs: classic | fanin | grp-fanin | grp-
                        fanout(default: classic)
  -j N, --workers N     number of data loading workers (default: 5)
  --epochs N            number of total epochs to run
  --run-epochs N        run only N epochs, used for checkpointing runs
  -b N, --batch-size N  mini-batch size (default: 256) per gpu
  --optimizer-batch-size N
                        size of a total batch size, for simulating bigger
                        batches using gradient accumulation
  --lr LR, --learning-rate LR
                        initial learning rate
  --lr-schedule SCHEDULE
                        Type of LR schedule: step, linear, cosine
  --warmup E            number of warmup epochs
  --label-smoothing S   label smoothing
  --mixup ALPHA         mixup alpha
  --momentum M          momentum
  --weight-decay W, --wd W
                        weight decay (default: 1e-4)
  --bn-weight-decay     use weight_decay on batch normalization learnable
                        parameters, (default: false)
  --nesterov            use nesterov momentum, (default: false)
  --print-freq N, -p N  print frequency (default: 10)
  --resume PATH         path to latest checkpoint (default: none)
  --pretrained-from-file PATH
                        load weights from here
  --static-loss-scale STATIC_LOSS_SCALE
                        Static loss scale, positive power of 2 values can
                        improve amp convergence.
  --dynamic-loss-scale  Use dynamic loss scaling. If supplied, this argument
                        supersedes --static-loss-scale.
  --prof N              Run only N iterations
  --amp                 Run model AMP (automatic mixed precision) mode.
  --seed SEED           random seed used for numpy and pytorch
  --gather-checkpoints  Gather checkpoints throughout the training, without
                        this flag only best and last checkpoints will be
                        stored
  --raport-file RAPORT_FILE
                        file in which to store JSON experiment raport
  --evaluate            evaluate checkpoint/model
  --training-only       do not evaluate
  --no-checkpoints      do not store any checkpoints, useful for benchmarking
  --checkpoint-filename CHECKPOINT_FILENAME
  --workspace DIR       path to directory where checkpoints will be stored
  --memory-format {nchw,nhwc}
                        memory layout, nchw or nhwc

```


### Dataset guidelines

To use your own dataset, divide it in directories as in the following scheme:

 - Training images - `train/<class id>/<image>`
 - Validation images - `val/<class id>/<image>`

If your dataset's has number of classes different than 1000, you need to pass `--num_classes N` flag to the training script.

### Training process

All the results of the training will be stored in the directory specified with `--workspace` argument.
Script will store:
 - most recent checkpoint - `checkpoint.pth.tar` (unless `--no-checkpoints` flag is used).
 - checkpoint with best validation accuracy - `model_best.pth.tar` (unless `--no-checkpoints` flag is used).
 - JSON log - in the file specified with `--raport-file` flag.

Metrics gathered through training:

 - `train.loss` - training loss
 - `train.total_ips` - training speed measured in images/second
 - `train.compute_ips` - training speed measured in images/second, not counting data loading
 - `train.data_time` - time spent on waiting on data
 - `train.compute_time` - time spent in forward/backward pass

To restart training from checkpoint use `--resume` option.

To start training from pretrained weights (e.g. downloaded from NGC) use `--pretrained-from-file` option.

The difference between those two is that the pretrained weights contain only model weights,
and checkpoints, apart from model weights, contain optimizer state, LR scheduler state.

Checkpoints are suitable for dividing the training into parts, for example in order
to divide the training job into shorter stages, or restart training after infrastructure fail.

Pretrained weights can be used as a base for finetuning the model to a different dataset,
or as a backbone to detection models.

### Inference process

Validation is done every epoch, and can be also run separately on a checkpointed model.

`python ./main.py --arch resnet50 --evaluate --epochs 1 --resume <path to checkpoint> -b <batch size> <path to imagenet>`

Metrics gathered through training:

 - `val.loss` - validation loss
 - `val.top1` - validation top1 accuracy
 - `val.top5` - validation top5 accuracy
 - `val.total_ips` - inference speed measured in images/second
 - `val.compute_ips` - inference speed measured in images/second, not counting data loading
 - `val.data_time` - time spent on waiting on data
 - `val.compute_time` - time spent on inference


To run inference on JPEG image, you have to first extract the model weights from checkpoint:

`python checkpoint2model.py --checkpoint-path <path to checkpoint> --weight-path <path where weights will be stored>`

Then run classification script:

`python classify.py --arch resnet50 --pretrained-from-file <path to weights from previous step> --precision AMP|FP32 --image <path to JPEG image>`

You can also run ImageNet validation on pretrained weights:

`python ./main.py --arch resnet50 --evaluate --epochs 1 --pretrained-from-file <path to pretrained weights> -b <batch size> <path to imagenet>`

#### NGC Pretrained weights:

Pretrained weights can be downloaded from NGC:

```bash
wget --content-disposition https://api.ngc.nvidia.com/v2/models/nvidia/resnet50_pyt_amp/versions/20.06.0/zip -O resnet50_pyt_amp_20.06.0.zip

unzip resnet50_pyt_amp_20.06.0.zip
```
To run inference on ImageNet, run:

`python ./main.py --arch resnet50 --evaluate --epochs 1 --pretrained-from-file nvidia_resnet50_200821.pth.tar -b <batch size> <path to imagenet>`

To run inference on JPEG image using pretrained weights:

`python classify.py --arch resnet50 --weights nvidia_resnet50_200821.pth.tar --precision AMP|FP32 --image <path to JPEG image>`


## Performance

The performance measurements in this document were conducted at the time of publication and may not reflect the performance achieved from NVIDIA’s latest software release. For the most up-to-date performance measurements, go to [NVIDIA Data Center Deep Learning Product Performance](https://developer.nvidia.com/deep-learning-performance-training-inference).

### Benchmarking

The following section shows how to run benchmarks measuring the model performance in training and inference modes.

#### Training performance benchmark

To benchmark training, run:

* For 1 GPU
    * FP32 (V100 GPUs only)
        `python ./launch.py --model resnet50 --precision FP32 --mode benchmark_training --platform DGX1V <path to imagenet> --raport-file benchmark.json --epochs 1 --prof 100`
    * TF32 (A100 GPUs only)
        `python ./launch.py --model resnet50 --precision TF32 --mode benchmark_training --platform DGXA100 <path to imagenet> --raport-file benchmark.json --epochs 1 --prof 100`
    * AMP
        `python ./launch.py --model resnet50 --precision AMP --mode benchmark_training --platform <DGX1V|DGXA100> <path to imagenet> --raport-file benchmark.json --epochs 1 --prof 100`
* For multiple GPUs
    * FP32 (V100 GPUs only)
        `python ./launch.py --model resnet50 --precision FP32 --mode benchmark_training --platform DGX1V <path to imagenet> --raport-file benchmark.json --epochs 1 --prof 100`
    * TF32 (A100 GPUs only)
        `python ./multiproc.py --nproc_per_node 8 ./launch.py --model resnet50 --precision TF32 --mode benchmark_training --platform DGXA100 <path to imagenet> --raport-file benchmark.json --epochs 1 --prof 100`
    * AMP
        `python ./multiproc.py --nproc_per_node 8 ./launch.py --model resnet50 --precision AMP --mode benchmark_training --platform <DGX1V|DGXA100> <path to imagenet> --raport-file benchmark.json --epochs 1 --prof 100`

Each of these scripts will run 100 iterations and save results in the `benchmark.json` file.

#### Inference performance benchmark

To benchmark inference, run:

* FP32 (V100 GPUs only)

`python ./launch.py --model resnet50 --precision FP32 --mode benchmark_inference --platform DGX1V <path to imagenet> --raport-file benchmark.json --epochs 1 --prof 100`

* TF32 (A100 GPUs only)

`python ./launch.py --model resnet50 --precision TF32 --mode benchmark_inference --platform DGXA100 <path to imagenet> --raport-file benchmark.json --epochs 1 --prof 100`

* AMP

`python ./launch.py --model resnet50 --precision AMP --mode benchmark_inference --platform <DGX1V|DGXA100> <path to imagenet> --raport-file benchmark.json --epochs 1 --prof 100`

Each of these scripts will run 100 iterations and save results in the `benchmark.json` file.

### Results

#### Training accuracy results

Our results were obtained by running the applicable training script in the pytorch-20.12 NGC container.

To achieve these same results, follow the steps in the [Quick Start Guide](#quick-start-guide).


##### Training accuracy: NVIDIA DGX A100 (8x A100 80GB)

| **Epochs** | **Mixed Precision Top1** | **TF32 Top1**  |
|:----------:|:------------------------:|:--------------:|
|     90     |      77.12 +/- 0.11      | 76.95 +/- 0.18 |
|    250     |      78.43 +/- 0.11      | 78.38 +/- 0.17 |


##### Training accuracy: NVIDIA DGX-1 (8x V100 16GB)

| **Epochs** | **Mixed Precision Top1** | **FP32 Top1**  |
|:----------:|:------------------------:|:--------------:|
|     90     |      76.88 +/- 0.16      | 77.01 +/- 0.16 |
|    250     |      78.25 +/- 0.12      | 78.30 +/- 0.16 |


##### Training accuracy: NVIDIA DGX-2 (16x V100 32GB)

| **epochs** | **Mixed Precision Top1** | **FP32 Top1** |
|:-:|:-:|:-:|
| 50 | 75.81 +/- 0.08 | 76.04 +/- 0.05 |
| 90 | 77.10 +/- 0.06 | 77.23 +/- 0.04 |
| 250 | 78.59 +/- 0.13 | 78.46 +/- 0.03 |

##### Example plots

The following images show a 250 epochs configuration on a DGX-1V.

![ValidationLoss](./img/loss_plot.png)

![ValidationTop1](./img/top1_plot.png)

![ValidationTop5](./img/top5_plot.png)

#### Training performance results

Our results were obtained by running the applicable training script in the pytorch-21.03 NGC container.

To achieve these same results, follow the steps in the [Quick Start Guide](#quick-start-guide).

##### Training performance: NVIDIA DGX A100 (8x A100 80GB)

| **GPUs** |  **Throughput - TF32**  | **Throughput - mixed precision** | **Throughput speedup (TF32 to mixed precision)** | **TF32 Strong Scaling** | **Mixed Precision Strong Scaling** | **Mixed Precision Training Time (90E)** | **TF32 Training Time (90E)** |
|:--------:|:----------:|:--------------------------------:|:------------------------------------------------:|:-----------------------:|:----------------------------------:|:---------------------------------------:|:----------------------------:|
|    1     | 938 img/s  |            2470 img/s            |                      2.63 x                      |          1.0 x          |               1.0 x                |                ~14 hours                |          ~36 hours           |
|    8     | 7248 img/s |           16621 img/s            |                      2.29 x                      |         7.72 x          |               6.72 x               |                ~3 hours                 |           ~5 hours           |


##### Training performance: NVIDIA DGX-1 16GB (8x V100 16GB)

| **GPUs** |  **Throughput - FP32**  | **Throughput - mixed precision** | **Throughput speedup (FP32 to mixed precision)** | **FP32 Strong Scaling** | **Mixed Precision Strong Scaling** | **Mixed Precision Training Time (90E)** | **FP32 Training Time (90E)** |
|:--------:|:----------:|:--------------------------------:|:------------------------------------------------:|:-----------------------:|:----------------------------------:|:---------------------------------------:|:----------------------------:|
|    1     | 367 img/s  |            1200 img/s            |                      3.26 x                      |          1.0 x          |               1.0 x                |                ~29 hours                |          ~92 hours           |
|    8     | 2855 img/s |            8322 img/s            |                      2.91 x                      |         7.76 x          |               6.93 x               |                ~5 hours                 |          ~12 hours           |


##### Training performance: NVIDIA DGX-1 32GB (8x V100 32GB)

| **GPUs** |  **Throughput - FP32**  | **Throughput - mixed precision** | **Throughput speedup (FP32 to mixed precision)** | **FP32 Strong Scaling** | **Mixed Precision Strong Scaling** | **Mixed Precision Training Time (90E)** | **FP32 Training Time (90E)** |
|:--------:|:----------:|:--------------------------------:|:------------------------------------------------:|:-----------------------:|:----------------------------------:|:---------------------------------------:|:----------------------------:|
|    1     | 356 img/s  |            1156 img/s            |                      3.24 x                      |          1.0 x          |               1.0 x                |                ~30 hours                |          ~95 hours           |
|    8     | 2766 img/s |            8056 img/s            |                      2.91 x                      |         7.75 x          |               6.96 x               |                ~5 hours                 |          ~13 hours           |


#### Inference performance results

Our results were obtained by running the applicable training script in the pytorch-21.03 NGC container.

To achieve these same results, follow the steps in the [Quick Start Guide](#quick-start-guide).

##### Inference performance: NVIDIA DGX-1 (1x V100 16GB)

###### FP32 Inference Latency

| **Batch Size** | **Throughput Avg** | **Latency Avg** | **Latency 95%** | **Latency 99%** |
|:--------------:|:------------------:|:---------------:|:---------------:|:---------------:|
|       1        |      96 img/s      |    10.37 ms     |    10.81 ms     |    11.73 ms     |
|       2        |     196 img/s      |    10.24 ms     |    11.18 ms     |    12.89 ms     |
|       4        |     386 img/s      |    10.46 ms     |    11.01 ms     |    11.75 ms     |
|       8        |     709 img/s      |     11.5 ms     |    12.36 ms     |    13.12 ms     |
|       16       |     1023 img/s     |    16.07 ms     |    15.69 ms     |    15.97 ms     |
|       32       |     1127 img/s     |    29.37 ms     |    28.53 ms     |    28.67 ms     |
|       64       |     1200 img/s     |     55.4 ms     |     53.5 ms     |    53.71 ms     |
|      128       |     1229 img/s     |    109.26 ms    |    104.04 ms    |    104.34 ms    |
|      256       |     1261 img/s     |    214.48 ms    |    202.51 ms    |    202.88 ms    |


###### Mixed Precision Inference Latency

| **Batch Size** | **Throughput Avg** | **Latency Avg** | **Latency 95%** | **Latency 99%** |
|:--------------:|:------------------:|:---------------:|:---------------:|:---------------:|
|       1        |      78 img/s      |    12.78 ms     |    13.27 ms     |    14.36 ms     |
|       2        |     154 img/s      |    13.01 ms     |    13.74 ms     |    15.19 ms     |
|       4        |     300 img/s      |    13.41 ms     |    14.25 ms     |    15.68 ms     |
|       8        |     595 img/s      |    13.65 ms     |    14.51 ms     |     15.6 ms     |
|       16       |     1178 img/s     |     14.0 ms     |    15.07 ms     |    16.26 ms     |
|       32       |     2146 img/s     |    15.84 ms     |    17.25 ms     |    18.53 ms     |
|       64       |     2984 img/s     |    23.18 ms     |    21.51 ms     |    21.93 ms     |
|      128       |     3249 img/s     |    43.55 ms     |    39.36 ms     |     40.1 ms     |
|      256       |     3382 img/s     |    84.14 ms     |     75.3 ms     |    80.08 ms     |


##### Inference performance: NVIDIA T4

###### FP32 Inference Latency

| **Batch Size** | **Throughput Avg** | **Latency Avg** | **Latency 95%** | **Latency 99%** |
|:--------------:|:------------------:|:---------------:|:---------------:|:---------------:|
|       1        |      98 img/s      |     10.7 ms     |    12.82 ms     |    16.71 ms     |
|       2        |     186 img/s      |    11.26 ms     |    13.79 ms     |    16.99 ms     |
|       4        |     325 img/s      |    12.73 ms     |    13.89 ms     |    18.03 ms     |
|       8        |     363 img/s      |    22.41 ms     |    22.57 ms     |     22.9 ms     |
|       16       |     409 img/s      |    39.77 ms     |     39.8 ms     |    40.23 ms     |
|       32       |     420 img/s      |    77.62 ms     |    76.92 ms     |    77.28 ms     |
|       64       |     428 img/s      |    152.73 ms    |    152.03 ms    |    153.02 ms    |
|      128       |     426 img/s      |    309.26 ms    |    303.38 ms    |    305.13 ms    |
|      256       |     415 img/s      |    635.98 ms    |    620.16 ms    |    625.21 ms    |


###### Mixed Precision Inference Latency

| **Batch Size** | **Throughput Avg** | **Latency Avg** | **Latency 95%** | **Latency 99%** |
|:--------------:|:------------------:|:---------------:|:---------------:|:---------------:|
|       1        |      79 img/s      |    12.96 ms     |    15.47 ms     |     20.0 ms     |
|       2        |     156 img/s      |    13.18 ms     |     14.9 ms     |    18.73 ms     |
|       4        |     317 img/s      |    12.99 ms     |    14.69 ms     |    19.05 ms     |
|       8        |     652 img/s      |    12.82 ms     |    16.04 ms     |    19.43 ms     |
|       16       |     1050 img/s     |     15.8 ms     |    16.57 ms     |    20.62 ms     |
|       32       |     1128 img/s     |    29.54 ms     |    28.79 ms     |    28.97 ms     |
|       64       |     1165 img/s     |    57.41 ms     |    55.67 ms     |    56.11 ms     |
|      128       |     1190 img/s     |    114.24 ms    |    109.17 ms    |    110.41 ms    |
|      256       |     1198 img/s     |    225.95 ms    |    215.28 ms    |    222.94 ms    |


## Release notes

### Changelog

1. September 2018
  * Initial release
2. January 2019
  * Added options Label Smoothing, fan-in initialization, skipping weight decay on batch norm gamma and bias.
3. May 2019
  * Cosine LR schedule
  * MixUp regularization
  * DALI support
  * DGX2 configurations
  * gradients accumulation
4. July 2019
  * DALI-CPU dataloader
  * Updated README
5. July 2020
  * Added A100 scripts
  * Updated README
6. February 2021
  * Moved from APEX AMP to Native AMP

### Known issues

There are no known issues with this model.