optimizers.py 4.28 KB
Newer Older
Sugon_ldc's avatar
Sugon_ldc committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import math

import numpy as np
import torch
from torch import optim


def get_optimizer(parameters, lr, args, state=None):
    if args.optimizer == "sgd":
        optimizer = get_sgd_optimizer(
            parameters,
            lr,
            momentum=args.momentum,
            weight_decay=args.weight_decay,
            nesterov=args.nesterov,
            bn_weight_decay=args.bn_weight_decay,
        )
    elif args.optimizer == "rmsprop":
        optimizer = get_rmsprop_optimizer(
            parameters,
            lr,
            alpha=args.rmsprop_alpha,
            momentum=args.momentum,
            weight_decay=args.weight_decay,
            eps=args.rmsprop_eps,
            bn_weight_decay=args.bn_weight_decay,
        )
    if not state is None:
        optimizer.load_state_dict(state)

    return optimizer


def get_sgd_optimizer(
    parameters, lr, momentum, weight_decay, nesterov=False, bn_weight_decay=False
):
    if bn_weight_decay:
        print(" ! Weight decay applied to BN parameters ")
        params = [v for n, v in parameters]
    else:
        print(" ! Weight decay NOT applied to BN parameters ")
        bn_params = [v for n, v in parameters if "bn" in n]
        rest_params = [v for n, v in parameters if not "bn" in n]
        print(len(bn_params))
        print(len(rest_params))

        params = [
            {"params": bn_params, "weight_decay": 0},
            {"params": rest_params, "weight_decay": weight_decay},
        ]

    optimizer = torch.optim.SGD(
        params, lr, momentum=momentum, weight_decay=weight_decay, nesterov=nesterov
    )

    return optimizer


def get_rmsprop_optimizer(
    parameters, lr, alpha, weight_decay, momentum, eps, bn_weight_decay=False
):
    bn_params = [v for n, v in parameters if "bn" in n]
    rest_params = [v for n, v in parameters if not "bn" in n]

    params = [
        {"params": bn_params, "weight_decay": weight_decay if bn_weight_decay else 0},
        {"params": rest_params, "weight_decay": weight_decay},
    ]

    optimizer = torch.optim.RMSprop(
        params,
        lr=lr,
        alpha=alpha,
        weight_decay=weight_decay,
        momentum=momentum,
        eps=eps,
    )

    return optimizer


def lr_policy(lr_fn):
    def _alr(optimizer, iteration, epoch):
        lr = lr_fn(iteration, epoch)
        for param_group in optimizer.param_groups:
            param_group["lr"] = lr

        return lr

    return _alr


def lr_step_policy(base_lr, steps, decay_factor, warmup_length):
    def _lr_fn(iteration, epoch):
        if epoch < warmup_length:
            lr = base_lr * (epoch + 1) / warmup_length
        else:
            lr = base_lr
            for s in steps:
                if epoch >= s:
                    lr *= decay_factor
        return lr

    return lr_policy(_lr_fn)


def lr_linear_policy(base_lr, warmup_length, epochs):
    def _lr_fn(iteration, epoch):
        if epoch < warmup_length:
            lr = base_lr * (epoch + 1) / warmup_length
        else:
            e = epoch - warmup_length
            es = epochs - warmup_length
            lr = base_lr * (1 - (e / es))
        return lr

    return lr_policy(_lr_fn)


def lr_cosine_policy(base_lr, warmup_length, epochs, end_lr=0):
    def _lr_fn(iteration, epoch):
        if epoch < warmup_length:
            lr = base_lr * (epoch + 1) / warmup_length
        else:
            e = epoch - warmup_length
            es = epochs - warmup_length
            lr = end_lr + (0.5 * (1 + np.cos(np.pi * e / es)) * (base_lr - end_lr))
        return lr

    return lr_policy(_lr_fn)


def lr_exponential_policy(
    base_lr,
    warmup_length,
    epochs,
    final_multiplier=0.001,
    decay_factor=None,
    decay_step=1,
    logger=None,
):
    """Exponential lr policy. Setting decay factor parameter overrides final_multiplier"""
    es = epochs - warmup_length

    if decay_factor is not None:
        epoch_decay = decay_factor
    else:
        epoch_decay = np.power(
            2, np.log2(final_multiplier) / math.floor(es / decay_step)
        )

    def _lr_fn(iteration, epoch):
        if epoch < warmup_length:
            lr = base_lr * (epoch + 1) / warmup_length
        else:
            e = epoch - warmup_length
            lr = base_lr * (epoch_decay ** math.floor(e / decay_step))
        return lr

    return lr_policy(_lr_fn, logger=logger)