configs.yml 14.7 KB
Newer Older
Sugon_ldc's avatar
Sugon_ldc committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
precision:
    AMP:
        static_loss_scale: 128
        amp: True
    FP32:
        amp: False
    TF32:
        amp: False

platform:
    DGX1V-16G:
        workers: 8
        prefetch: 4
        gpu_affinity: socket_unique_contiguous
    DGX1V-32G:
        workers: 8
        prefetch: 4
        gpu_affinity: socket_unique_contiguous
    T4:
        workers: 8
    DGX1V:
        workers: 8
        prefetch: 4
        gpu_affinity: socket_unique_contiguous
    DGX2V:
        workers: 8
        prefetch: 4
        gpu_affinity: socket_unique_contiguous
    DGXA100:
        workers: 10
        prefetch: 4
        gpu_affinity: socket_unique_contiguous
    Z100L:
        workers: 8
        prefetch: 4
        gpu_affinity: none

mode:
    benchmark_training: &benchmark_training
        print_freq: 1
        epochs: 3
        training_only: True
        evaluate: False
        save_checkpoints: False
    benchmark_training_short:
        <<: *benchmark_training
        epochs: 1
        data_backend: synthetic
        prof: 100
    benchmark_inference: &benchmark_inference
        print_freq: 1
        epochs: 1
        training_only: False
        evaluate: True
        save_checkpoints: False
    convergence:
        print_freq: 20
        training_only: False
        evaluate: False
        save_checkpoints: True
    evaluate:
        print_freq: 20
        training_only: False
        evaluate: True
        epochs: 1
        save_checkpoints: False

anchors:
    # ResNet_like params: {{{
    resnet_params: &resnet_params
        label_smoothing: 0.1
        mixup: 0.2
        lr_schedule: cosine
        momentum: 0.875
        warmup: 8
        epochs: 250
        data_backend: pytorch
        num_classes: 1000
        image_size: 224
        interpolation: bilinear
    resnet_params_896: &resnet_params_896
        <<: *resnet_params
        optimizer_batch_size: 896
        lr: 0.896
        weight_decay: 6.103515625e-05
    resnet_params_1k: &resnet_params_1k
        <<: *resnet_params
        optimizer_batch_size: 1024
        lr: 1.024
        weight_decay: 6.103515625e-05
    resnet_params_2k: &resnet_params_2k
        <<: *resnet_params
        optimizer_batch_size: 2048
        lr: 2.048
        weight_decay: 3.0517578125e-05
    resnet_params_4k: &resnet_params_4k
        <<: *resnet_params
        optimizer_batch_size: 4096
        lr: 4.096
        weight_decay: 3.0517578125e-05
    # }}}
    # EfficienNet Params: {{{
    efficientnet_params: &efficientnet_params
        optimizer: rmsprop
        rmsprop_alpha: 0.9
        rmsprop_eps: 0.01
        print_freq: 100
        label_smoothing: 0.1
        mixup: 0.2
        lr_schedule: cosine
        momentum: 0.9
        warmup: 16 
        epochs: 400
        data_backend: pytorch
        augmentation: autoaugment
        num_classes: 1000
        interpolation: bicubic
    efficientnet_b0_params_4k: &efficientnet_b0_params_4k
        <<: *efficientnet_params
        optimizer_batch_size: 4096
        lr: 0.08
        weight_decay: 1e-05
        image_size: 224
    efficientnet_b4_params_4k: &efficientnet_b4_params_4k
        <<: *efficientnet_params
        optimizer_batch_size: 4096
        lr: 0.16
        weight_decay: 5e-06
        image_size: 380
    # }}}
models:
    resnet50: # {{{
        DGX1V: &RN50_DGX1V
            AMP:
                <<: *resnet_params_2k
                arch: resnet50
                batch_size: 256
                memory_format: nhwc
            FP32:
                <<: *resnet_params_896
                batch_size: 112
        DGX1V-16G:
            <<: *RN50_DGX1V
        DGX1V-32G:
            <<: *RN50_DGX1V
        DGX2V:
            AMP:
                <<: *resnet_params_4k
                arch: resnet50
                batch_size: 256
                memory_format: nhwc
            FP32:
                <<: *resnet_params_4k
                arch: resnet50
                batch_size: 256
        DGXA100:
            AMP:
                <<: *resnet_params_2k
                arch: resnet50
                batch_size: 256
                memory_format: nhwc
            TF32:
                <<: *resnet_params_2k
                arch: resnet50
                batch_size: 256
        T4:
            AMP:
                <<: *resnet_params_2k
                arch: resnet50
                batch_size: 256
                memory_format: nhwc
            FP32:
                <<: *resnet_params_2k
                batch_size: 128
        Z100L:
            AMP:
                <<: *resnet_params_2k
                arch: resnet50
                batch_size: 128
                memory_format: nhwc
            FP32:
                <<: *resnet_params_2k
                batch_size: 128
    # }}}
    resnext101-32x4d: # {{{
        DGX1V: &RNXT_DGX1V
            AMP:
                <<: *resnet_params_1k
                arch: resnext101-32x4d
                batch_size: 128
                memory_format: nhwc
            FP32:
                <<: *resnet_params_1k
                arch: resnext101-32x4d
                batch_size: 64
        DGX1V-16G:
            <<: *RNXT_DGX1V
        DGX1V-32G:
            <<: *RNXT_DGX1V
        DGXA100:
            AMP:
                <<: *resnet_params_1k
                arch: resnext101-32x4d
                batch_size: 128
                memory_format: nhwc
            TF32:
                <<: *resnet_params_1k
                arch: resnext101-32x4d
                batch_size: 128
        T4:
            AMP:
                <<: *resnet_params_1k
                arch: resnext101-32x4d
                batch_size: 128
                memory_format: nhwc
            FP32:
                <<: *resnet_params_1k
                arch: resnext101-32x4d
                batch_size: 64
    # }}}
    se-resnext101-32x4d: # {{{
        DGX1V: &SERNXT_DGX1V
            AMP:
                <<: *resnet_params_896
                arch: se-resnext101-32x4d
                batch_size: 112
                memory_format: nhwc
            FP32:
                <<: *resnet_params_1k
                arch: se-resnext101-32x4d
                batch_size: 64
        DGX1V-16G:
            <<: *SERNXT_DGX1V
        DGX1V-32G:
            <<: *SERNXT_DGX1V
        DGXA100:
            AMP:
                <<: *resnet_params_1k
                arch: se-resnext101-32x4d
                batch_size: 128
                memory_format: nhwc
            TF32:
                <<: *resnet_params_1k
                arch: se-resnext101-32x4d
                batch_size: 128
        T4:
            AMP:
                <<: *resnet_params_1k
                arch: se-resnext101-32x4d
                batch_size: 128
                memory_format: nhwc
            FP32:
                <<: *resnet_params_1k
                arch: se-resnext101-32x4d
                batch_size: 64
    # }}}
    efficientnet-widese-b0: # {{{
        T4:
            AMP:
                <<: *efficientnet_b0_params_4k
                arch: efficientnet-widese-b0
                batch_size: 128
                memory_format: nhwc
            FP32:
                <<: *efficientnet_b0_params_4k
                arch: efficientnet-widese-b0
                batch_size: 64
        DGX1V-16G:
            AMP:
                <<: *efficientnet_b0_params_4k
                arch: efficientnet-widese-b0
                batch_size: 128
                memory_format: nhwc
            FP32:
                <<: *efficientnet_b0_params_4k
                arch: efficientnet-widese-b0
                batch_size: 64
        DGX1V-32G:
            AMP:
                <<: *efficientnet_b0_params_4k
                arch: efficientnet-widese-b0
                batch_size: 256
                memory_format: nhwc
            FP32:
                <<: *efficientnet_b0_params_4k
                arch: efficientnet-widese-b0
                batch_size: 128
        DGXA100:
            AMP:
                <<: *efficientnet_b0_params_4k
                arch: efficientnet-widese-b0
                batch_size: 256
                memory_format: nhwc
            TF32:
                <<: *efficientnet_b0_params_4k
                arch: efficientnet-widese-b0
                batch_size: 256
    # }}}
    efficientnet-b0: # {{{
        T4:
            AMP:
                <<: *efficientnet_b0_params_4k
                arch: efficientnet-b0
                batch_size: 128
                memory_format: nhwc
            FP32:
                <<: *efficientnet_b0_params_4k
                arch: efficientnet-b0
                batch_size: 64
        DGX1V-16G:
            AMP:
                <<: *efficientnet_b0_params_4k
                arch: efficientnet-b0
                batch_size: 128
                memory_format: nhwc
            FP32:
                <<: *efficientnet_b0_params_4k
                arch: efficientnet-b0
                batch_size: 64
        DGX1V-32G:
            AMP:
                <<: *efficientnet_b0_params_4k
                arch: efficientnet-b0
                batch_size: 256
                memory_format: nhwc
            FP32:
                <<: *efficientnet_b0_params_4k
                arch: efficientnet-b0
                batch_size: 128
        DGXA100:
            AMP:
                <<: *efficientnet_b0_params_4k
                arch: efficientnet-b0
                batch_size: 256
                memory_format: nhwc
            TF32:
                <<: *efficientnet_b0_params_4k
                arch: efficientnet-b0
                batch_size: 256
    # }}}
    efficientnet-quant-b0: # {{{
        T4:
            AMP:
                <<: *efficientnet_b0_params_4k
                arch: efficientnet-quant-b0
                batch_size: 128
                memory_format: nhwc
            FP32:
                <<: *efficientnet_b0_params_4k
                arch: efficientnet-quant-b0
                batch_size: 64
        DGX1V-16G:
            AMP:
                <<: *efficientnet_b0_params_4k
                arch: efficientnet-quant-b0
                batch_size: 128
                memory_format: nhwc
            FP32:
                <<: *efficientnet_b0_params_4k
                arch: efficientnet-quant-b0
                batch_size: 64
        DGX1V-32G:
            AMP:
                <<: *efficientnet_b0_params_4k
                arch: efficientnet-quant-b0
                batch_size: 256
                memory_format: nhwc
            FP32:
                <<: *efficientnet_b0_params_4k
                arch: efficientnet-quant-b0
                batch_size: 128
        DGXA100:
            AMP:
                <<: *efficientnet_b0_params_4k
                arch: efficientnet-quant-b0
                batch_size: 256
                memory_format: nhwc
            TF32:
                <<: *efficientnet_b0_params_4k
                arch: efficientnet-quant-b0
                batch_size: 256
    # }}}
    efficientnet-widese-b4: # {{{
        T4:
            AMP:
                <<: *efficientnet_b4_params_4k
                arch: efficientnet-widese-b4
                batch_size: 32
                memory_format: nhwc
            FP32:
                <<: *efficientnet_b4_params_4k
                arch: efficientnet-widese-b4
                batch_size: 16
        DGX1V-16G:
            AMP:
                <<: *efficientnet_b4_params_4k
                arch: efficientnet-widese-b4
                batch_size: 32
                memory_format: nhwc
            FP32:
                <<: *efficientnet_b4_params_4k
                arch: efficientnet-widese-b4
                batch_size: 16
        DGX1V-32G:
            AMP:
                <<: *efficientnet_b4_params_4k
                arch: efficientnet-widese-b4
                batch_size: 64
                memory_format: nhwc
            FP32:
                <<: *efficientnet_b4_params_4k
                arch: efficientnet-widese-b4
                batch_size: 32
        DGXA100:
            AMP:
                <<: *efficientnet_b4_params_4k
                arch: efficientnet-widese-b4
                batch_size: 128
                memory_format: nhwc
            TF32:
                <<: *efficientnet_b4_params_4k
                arch: efficientnet-widese-b4
                batch_size: 64
    # }}}
    efficientnet-b4: # {{{
        T4:
            AMP:
                <<: *efficientnet_b4_params_4k
                arch: efficientnet-b4
                batch_size: 32
                memory_format: nhwc
            FP32:
                <<: *efficientnet_b4_params_4k
                arch: efficientnet-b4
                batch_size: 16
        DGX1V-16G:
            AMP:
                <<: *efficientnet_b4_params_4k
                arch: efficientnet-b4
                batch_size: 32
                memory_format: nhwc
            FP32:
                <<: *efficientnet_b4_params_4k
                arch: efficientnet-b4
                batch_size: 16
        DGX1V-32G:
            AMP:
                <<: *efficientnet_b4_params_4k
                arch: efficientnet-b4
                batch_size: 64
                memory_format: nhwc
            FP32:
                <<: *efficientnet_b4_params_4k
                arch: efficientnet-b4
                batch_size: 32
        DGXA100:
            AMP:
                <<: *efficientnet_b4_params_4k
                arch: efficientnet-b4
                batch_size: 128
                memory_format: nhwc
            TF32:
                <<: *efficientnet_b4_params_4k
                arch: efficientnet-b4
                batch_size: 64
    # }}}
    efficientnet-quant-b4: # {{{
        T4:
            AMP:
                <<: *efficientnet_b4_params_4k
                arch: efficientnet-quant-b4
                batch_size: 32
                memory_format: nhwc
            FP32:
                <<: *efficientnet_b4_params_4k
                arch: efficientnet-quant-b4
                batch_size: 16
        DGX1V-16G:
            AMP:
                <<: *efficientnet_b4_params_4k
                arch: efficientnet-quant-b4
                batch_size: 32
                memory_format: nhwc
            FP32:
                <<: *efficientnet_b4_params_4k
                arch: efficientnet-quant-b4
                batch_size: 16
        DGX1V-32G:
            AMP:
                <<: *efficientnet_b4_params_4k
                arch: efficientnet-quant-b4
                batch_size: 64
                memory_format: nhwc
            FP32:
                <<: *efficientnet_b4_params_4k
                arch: efficientnet-quant-b4
                batch_size: 32
        DGXA100:
            AMP:
                <<: *efficientnet_b4_params_4k
                arch: efficientnet-quant-b4
                batch_size: 128
                memory_format: nhwc
            TF32:
                <<: *efficientnet_b4_params_4k
                arch: efficientnet-quant-b4
                batch_size: 64
    # }}}