- 26 May, 2021 1 commit
-
-
A. Unique TensorFlower authored
PiperOrigin-RevId: 375854504
-
- 25 May, 2021 1 commit
-
-
A. Unique TensorFlower authored
PiperOrigin-RevId: 375621932
-
- 24 May, 2021 1 commit
-
-
Hongkun Yu authored
PiperOrigin-RevId: 375548215
-
- 22 May, 2021 2 commits
-
-
Rami Al-Rfou authored
PiperOrigin-RevId: 375291534
-
stephenwu authored
-
- 21 May, 2021 2 commits
-
-
stephenwu authored
-
Rami Al-Rfou authored
PiperOrigin-RevId: 375007439
-
- 20 May, 2021 3 commits
-
-
Rami Al-Rfou authored
PiperOrigin-RevId: 374975819
-
A. Unique TensorFlower authored
PiperOrigin-RevId: 374934810
-
Rami Al-Rfou authored
PiperOrigin-RevId: 374890121
-
- 19 May, 2021 1 commit
-
-
Frederick Liu authored
PiperOrigin-RevId: 374640999
-
- 18 May, 2021 1 commit
-
-
Frederick Liu authored
PiperOrigin-RevId: 374472500
-
- 17 May, 2021 2 commits
-
-
Frederick Liu authored
PiperOrigin-RevId: 374267447
-
Frederick Liu authored
PiperOrigin-RevId: 374236491
-
- 14 May, 2021 1 commit
-
-
A. Unique TensorFlower authored
PiperOrigin-RevId: 373866819
-
- 13 May, 2021 1 commit
-
-
A. Unique TensorFlower authored
PiperOrigin-RevId: 373569850
-
- 11 May, 2021 2 commits
-
-
Bruce Fontaine authored
PiperOrigin-RevId: 373191989
-
A. Unique TensorFlower authored
PiperOrigin-RevId: 373051743
-
- 05 May, 2021 1 commit
-
-
Hongkun Yu authored
PiperOrigin-RevId: 372153802
-
- 26 Apr, 2021 1 commit
-
-
Chen Chen authored
PiperOrigin-RevId: 370538762
-
- 23 Apr, 2021 1 commit
-
-
Chen Chen authored
PiperOrigin-RevId: 370159521
-
- 20 Apr, 2021 1 commit
-
-
A. Unique TensorFlower authored
PiperOrigin-RevId: 369459880
-
- 19 Apr, 2021 1 commit
-
-
A. Unique TensorFlower authored
Add `include_example_field` into `SentencePredictionTextDataLoader` so that we can use the data loader in the predict step of `SentencePrediction` task. PiperOrigin-RevId: 369215827
-
- 17 Apr, 2021 1 commit
-
-
Chen Chen authored
tensorflow.python.framework.errors_impl.NotFoundError: /usr/local/lib/python3.6/dist-packages/tensorflow_text/python/metrics/_text_similarity_metric_ops.so: undefined symbol: _ZN10tensorflow6StatusC1ENS_5error4CodeEN4absl12lts_2021032411string_viewEOSt6vectorINS_10StackFrameESaIS7_EE PiperOrigin-RevId: 368978629
-
- 15 Apr, 2021 1 commit
-
-
Scott Zhu authored
PiperOrigin-RevId: 368571725
-
- 13 Apr, 2021 2 commits
-
-
A. Unique TensorFlower authored
PiperOrigin-RevId: 368260712
-
Reed Wanderman-Milne authored
This replaces symbols in tf.keras.mixed_precision.experimental with the corresponding nonexperimental symbols. In some cases, passing a Policy is replaced with passing a policy name for conciseness. Additionally, for the Shakespeare model, the loss_scale flag is removed, since supporting it with the nonexperimental API is slightly more verbose and it is recommended users use the default loss scale. PiperOrigin-RevId: 368123944
-
- 12 Apr, 2021 1 commit
-
-
Reed Wanderman-Milne authored
For all modified calls to set_mixed_precision_policy(), the loss_scale argument was removed, as it cannot be passed if the nonexperimental API is used. For all such callers, the loss_scale is later used to explicitly create a LossScaleOptimizer, so removing the argument has no impact. Switching to the non-experimental LossScaleOptimizer has no effect, as it has near identical behavior and all isinstance checks within the official models check for the non-experimental version. PiperOrigin-RevId: 368101975
-
- 09 Apr, 2021 1 commit
-
-
Reed Wanderman-Milne authored
All models which support loss scaling support dynamic loss scaling, so the argument has no purpose. It used to be that some models scaled the loss manually instead of using a LossScaleOptimizer, and so did not support dynamic loss scaling. PiperOrigin-RevId: 367719521
-
- 08 Apr, 2021 1 commit
-
-
A. Unique TensorFlower authored
PiperOrigin-RevId: 367463455
-
- 07 Apr, 2021 1 commit
-
-
A. Unique TensorFlower authored
PiperOrigin-RevId: 367244904
-
- 06 Apr, 2021 2 commits
-
-
Hongkun Yu authored
PiperOrigin-RevId: 367101911
-
Jeremiah Liu authored
For the `GaussianProcessClassificationHead`, the temperature scaling needs to be disabled during training to avoid unexpected modification to the learning rate, which harms model quality. (Unfortunately, this seems to require adding `training` to the `call` method). Also set the default of `gp_cov_ridge_penalty` in `RandomFeatureGaussianProcess` to 1 to be consistent with that in the `GaussianProcessClassificationHead`. PiperOrigin-RevId: 366917075
-
- 05 Apr, 2021 2 commits
-
-
Jeremiah Liu authored
This change allows `GaussianProcessClassificationHead` to output only the predictive logits during training and evaluation (instead of outputting a tuple `(logits, covmat)`). The goal is to make the layer more compatible with `SentencePredictionTask` and Keras' `model.fit()` API. PiperOrigin-RevId: 366891298
-
Hongkun Yu authored
PiperOrigin-RevId: 366883351
-
- 01 Apr, 2021 5 commits
-
-
Chen Chen authored
PiperOrigin-RevId: 366354480
-
Chen Chen authored
PiperOrigin-RevId: 366313554
-
Jeremiah Liu authored
PiperOrigin-RevId: 366178203
-
Jeremiah Liu authored
PiperOrigin-RevId: 366175727
-
Jeremiah Liu authored
PiperOrigin-RevId: 366170373
-