- 30 Mar, 2023 1 commit
-
-
qianyj authored
-
- 06 Jun, 2021 4 commits
-
-
Hongkun Yu authored
PiperOrigin-RevId: 377803367
-
Hongkun Yu authored
PiperOrigin-RevId: 377803367
-
Hongkun Yu authored
PiperOrigin-RevId: 377801393
-
Hongkun Yu authored
PiperOrigin-RevId: 377801393
-
- 10 Apr, 2021 1 commit
-
-
Reed Wanderman-Milne authored
All models which support loss scaling support dynamic loss scaling, so the argument has no purpose. It used to be that some models scaled the loss manually instead of using a LossScaleOptimizer, and so did not support dynamic loss scaling. PiperOrigin-RevId: 367719521
-
- 09 Apr, 2021 1 commit
-
-
Reed Wanderman-Milne authored
All models which support loss scaling support dynamic loss scaling, so the argument has no purpose. It used to be that some models scaled the loss manually instead of using a LossScaleOptimizer, and so did not support dynamic loss scaling. PiperOrigin-RevId: 367719521
-
- 06 Apr, 2021 2 commits
-
-
Reed Wanderman-Milne authored
The function `tf.train.experimental.enable_mixed_precision_graph_rewrite` will be removed from the TF2 namespace soon, at which point it will only be accessible under tf.compat.v1. PiperOrigin-RevId: 367046393
-
Reed Wanderman-Milne authored
The function `tf.train.experimental.enable_mixed_precision_graph_rewrite` will be removed from the TF2 namespace soon, at which point it will only be accessible under tf.compat.v1. PiperOrigin-RevId: 367046393
-
- 28 Feb, 2021 4 commits
-
-
Hongkun Yu authored
PiperOrigin-RevId: 359994674
-
Hongkun Yu authored
PiperOrigin-RevId: 359994674
-
Hongkun Yu authored
PiperOrigin-RevId: 359990341
-
Hongkun Yu authored
PiperOrigin-RevId: 359990341
-
- 24 Jan, 2021 2 commits
-
-
Hongkun Yu authored
PiperOrigin-RevId: 353533479
-
Hongkun Yu authored
PiperOrigin-RevId: 353533479
-
- 12 Aug, 2020 2 commits
-
-
Hongkun Yu authored
PiperOrigin-RevId: 326286926
-
Hongkun Yu authored
PiperOrigin-RevId: 326286926
-
- 29 Apr, 2020 1 commit
-
-
Hongkun Yu authored
PiperOrigin-RevId: 309079916
-
- 25 Apr, 2020 1 commit
-
-
Sergey Mironov authored
-
- 22 Apr, 2020 1 commit
-
-
Hongkun Yu authored
The logger was probably replaced by perfzero(?). PiperOrigin-RevId: 307756692
-
- 17 Mar, 2020 1 commit
-
-
ayushmankumar7 authored
-
- 05 Mar, 2020 1 commit
-
-
Hongkun Yu authored
PiperOrigin-RevId: 299160422
-
- 02 Mar, 2020 1 commit
-
-
Will Cromar authored
PiperOrigin-RevId: 298466825
-
- 25 Feb, 2020 1 commit
-
-
Hongkun Yu authored
PiperOrigin-RevId: 297002741
-
- 27 Nov, 2019 1 commit
-
-
Hongkun Yu authored
PiperOrigin-RevId: 282669615
-
- 28 Oct, 2019 1 commit
-
-
Zongwei Zhou authored
PiperOrigin-RevId: 277082247
-
- 21 Oct, 2019 1 commit
-
-
minoring authored
arparse -> argparse
-
- 16 Oct, 2019 1 commit
-
-
Reed Wanderman-Milne authored
To test, I did 50 fp32 runs and 50 fp16 runs. I used the following command: python ncf_keras_main.py --dataset=ml-20m --num_gpus=1 --train_epochs=10 --clean --batch_size=99000 --learning_rate=0.00382059 --beta1=0.783529 --beta2=0.909003 --epsilon=1.45439e-7 --layers=256,256,128,64 --num_factors=64 --hr_threshold=0.635 --ml_perf --nouse_synthetic_data --data_dir ~/ncf_data_dir_python3 --model_dir ~/tmp_model_dir --keras_use_ctl For the fp16 runs, I added --dtype=fp16. The average hit-rate for both fp16 and fp32 was 0.6365. I also did 50 runs with the mixed precision graph rewrite, and the average hit-rate was 0.6363. The difference is likely due to noise. PiperOrigin-RevId: 275059871
-
- 07 Oct, 2019 1 commit
-
-
A. Unique TensorFlower authored
PiperOrigin-RevId: 273371605
-
- 09 Sep, 2019 1 commit
-
-
Reed Wanderman-Milne authored
--stop_threshold, --num_gpu, --hooks, --export_dir, and --distribution_strategy have been unexposed from models which do not use them PiperOrigin-RevId: 268032080
-
- 04 Sep, 2019 1 commit
-
-
Reed Wanderman-Milne authored
--clean, --train_epochs, and --epochs_between_evals have been unexposed from models which do not use them PiperOrigin-RevId: 267065651
-
- 30 Aug, 2019 1 commit
-
-
Reed Wanderman-Milne authored
PiperOrigin-RevId: 266376708
-
- 26 Aug, 2019 1 commit
-
-
Reed Wanderman-Milne authored
--synthetic_data, --dtype, --all_reduce_alg, and --num_packs have been unexposed from models which do not use them PiperOrigin-RevId: 265483564
-
- 23 Aug, 2019 1 commit
-
-
Reed Wanderman-Milne authored
--num_parallel_calls, --inter_op_parallelism_threads, and --intra_op_parallelism_threads have been unexposed from models which do not use them PiperOrigin-RevId: 264965788
-
- 20 Aug, 2019 2 commits
-
-
Vinh Nguyen authored
-
Vinh Nguyen authored
-
- 19 Aug, 2019 1 commit
-
-
Reed Wanderman-Milne authored
Only the V1 resnet model uses --max_train_steps. This unexposes the flag in the keras_application_models, mnist, keras resnet, CTL resnet Models. Before this change, such models allowed the flag to be specified, but ignored it. I also removed the "max_train" argument from the run_synthetic function, since this only had any meaning for the V1 resnet model. Instead, the V1 resnet model now directly passes --max_train_steps=1 to run_synthetic. PiperOrigin-RevId: 264269836
-
- 16 Aug, 2019 1 commit
-
-
Ayush Dubey authored
Also add `worker_hosts` and `task_index` flags. These flags enable running the model over multiple hosts by passing the cluster information via command line. Setting `TF_CONFIG` will continue to work. PiperOrigin-RevId: 263825245
-
- 06 Aug, 2019 1 commit
-
-
Toby Boyd authored
* force_v2_in_keras_compile FLAG default to None and added seperate temp path. * switch to force testing 1v path not force v2 path. * Rename function force_v1_path.
-
- 23 Jul, 2019 1 commit
-
-
Toby Boyd authored
* Add force_run_distributed tests. * Added enable_eager * r/force_run_distributed/force_v2_in_keras_compile * Adding force_v2 tests and FLAGs. * Rename method to avoid conflict. * Add cpu force_v2 tests. * fix lint, wrap line. * change to force_v2_in_keras_compile * Update method name. * Lower mlperf target to 0.736.
-