- 21 Nov, 2018 1 commit
-
-
Vyas Adhikari authored
Updated to 1.9 for consistency with running_pets.md
-
- 13 Jul, 2018 1 commit
-
-
pkulzc authored
* Merged commit includes the following changes: 204316992 by Zhichao Lu: Update docs to prepare inputs -- 204309254 by Zhichao Lu: Update running_pets.md to use new binaries and correct a few things in running_on_cloud.md -- 204306734 by Zhichao Lu: Move old binaries into legacy folder and add deprecation notice. -- 204267757 by Zhichao Lu: Fixing a problem in VRD evaluation with missing ground truth annotations for images that do not contain objects from 62 groundtruth classes. -- 204167430 by Zhichao Lu: This fixes a flaky losses test failure. -- 203670721 by Zhichao Lu: Internal change. -- 203569388 by Zhichao Lu: Internal change 203546580 by Zhichao Lu: * Expand TPU compatibility g3doc with config snippets * Change mscoco dataset path in sample configs to the sharded versions -- 203325694 by Zhichao Lu: Make merge_multiple_label_boxes work for model_main code path. -- 203305655 by Zhichao Lu: Remove the 1x1 conv layer before pooling in MobileNet-v1-PPN feature extractor. -- 203139608 by Zhichao Lu: - Support exponential_decay with burnin learning rate schedule. - Add the minimum learning rate option. - Make the exponential decay start only after the burnin steps. -- 203068703 by Zhichao Lu: Modify create_coco_tf_record.py to output sharded files. -- 203025308 by Zhichao Lu: Add an option to share the prediction tower in WeightSharedBoxPredictor. -- 203024942 by Zhichao Lu: Move ssd mobilenet v1 ppn configs to third party. -- 202901259 by Zhichao Lu: Delete obsolete ssd mobilenet v1 focal loss configs and update pets dataset path -- 202894154 by Zhichao Lu: Move all TPU compatible ssd mobilenet v1 coco14/pet configs to third party. -- 202861774 by Zhichao Lu: Move Retinanet (SSD + FPN + Shared box predictor) configs to third_party. -- PiperOrigin-RevId: 204316992 * Add original files back.
-
- 21 Sep, 2017 1 commit
-
-
Neal Wu authored
-
- 15 Jun, 2017 1 commit
-
-
derekjchow authored
For details see our paper: "Speed/accuracy trade-offs for modern convolutional object detectors." Huang J, Rathod V, Sun C, Zhu M, Korattikara A, Fathi A, Fischer I, Wojna Z, Song Y, Guadarrama S, Murphy K, CVPR 2017 https://arxiv.org/abs/1611.10012
-