- 24 Jun, 2020 1 commit
-
-
vivek rathod authored
318106429 by derekjchow: Add Dockerfiles for TF-OD API. 1.15 and 2.2 supported currently. -- 318083650 by rathodv: Internal Change. -- 317893148 by Zhichao Lu: Fix mapping from proto fields to parameters of the data augmentation functions for horizontal flip, vertical flip and 90 degree rotations. -- 317753117 by Zhichao Lu: Adds keras hyperparam option to force use_bias to True, even when using batch norm. -- 317613986 by Zhichao Lu: Improves Keypoints support for data augmentation by means of 90 degree rotation adding an option to permute keypoints. Unify the interfaces among flip and rotation ops for data augmentation by exposing additional properties to the user. -- 317136881 by Zhichao Lu: Clarifying documentation -- 317097141 by Zhichao Lu: Adding Context R-CNN Release to TFODAPI ReadMe -- 316999744 by Zhichao Lu: Add import tensorflow.compat.v2 as tf2 in the model_lib to ensure tf1 compatibility. -- 316964482 by Zhichao Lu: adding a note about a config change needed for exporting detection features -- 316944293 by Zhichao Lu: Adding install instructions for apache beam -- 316917592 by lzc: Internal change. -- PiperOrigin-RevId: 318106429 Co-authored-by:Zhichao Lu <lzc@google.com>
-
- 26 May, 2020 1 commit
-
-
pkulzc authored
* Merged commit includes the following changes: 311933687 by Sergio Guadarrama: Removes spurios use of tf.compat.v2, which results in spurious tf.compat.v1.compat.v2. Adds basic test to nasnet_utils. Replaces all remaining import tensorflow as tf with import tensorflow.compat.v1 as tf -- 311766063 by Sergio Guadarrama: Removes explicit tf.compat.v1 in all call sites (we already import tf.compat.v1, so this code was doing tf.compat.v1.compat.v1). The existing code worked in latest version of tensorflow, 2.2, (and 1.15) but not in 1.14 or in 2.0.0a, this CL fixes it. -- 311624958 by Sergio Guadarrama: Updates README that doesn't render properly in github documentation -- 310980959 by Sergio Guadarrama: Moves research_models/slim off tf.contrib.slim/layers/framework to tf_slim -- 310263156 by Sergio Guadarrama: Adds model breakdown for MobilenetV3 -- 308640...
-
- 12 May, 2020 1 commit
-
-
pkulzc authored
310447280 by lzc: Internal change 310420845 by Zhichao Lu: Open source the internal Context RCNN code. -- 310362339 by Zhichao Lu: Internal change 310259448 by lzc: Update required TF version for OD API. -- 310252159 by Zhichao Lu: Port patch_ops_test to TF1/TF2 as TPUs. -- 310247180 by Zhichao Lu: Ignore keypoint heatmap loss in the regions/bounding boxes with target keypoint class but no valid keypoint annotations. -- 310178294 by Zhichao Lu: Opensource MnasFPN https://arxiv.org/abs/1912.01106 -- 310094222 by lzc: Internal changes. -- 310085250 by lzc: Internal Change. -- 310016447 by huizhongc: Remove unrecognized classes from labeled_classes. -- 310009470 by rathodv: Mark batcher.py as TF1 only. -- 310001984 by rathodv: Update core/preprocessor.py to be compatible with TF1/TF2.. -- 309455035 by Zhichao Lu: Makes the freezable_batch_norm_test run w/ v2 behavior. The main change is in v2 updates will happen right away when running batchnorm in training mode. So, we need to restore the weights between batchnorm calls to make sure the numerical checks all start from the same place. -- 309425881 by Zhichao Lu: Make TF1/TF2 optimizer builder tests explicit. -- 309408646 by Zhichao Lu: Make dataset builder tests TF1 and TF2 compatible. -- 309246305 by Zhichao Lu: Added the functionality of combining the person keypoints and object detection annotations in the binary that converts the COCO raw data to TfRecord. -- 309125076 by Zhichao Lu: Convert target_assigner_utils to TF1/TF2. -- 308966359 by huizhongc: Support SSD training with partially labeled groundtruth. -- 308937159 by rathodv: Update core/target_assigner.py to be compatible with TF1/TF2. -- 308774302 by Zhichao Lu: Internal -- 308732860 by rathodv: Make core/prefetcher.py compatible with TF1 only. -- 308726984 by rathodv: Update core/multiclass_nms_test.py to be TF1/TF2 compatible. -- 308714718 by rathodv: Update core/region_similarity_calculator_test.py to be TF1/TF2 compatible. -- 308707960 by rathodv: Update core/minibatch_sampler_test.py to be TF1/TF2 compatible. -- 308700595 by rathodv: Update core/losses_test.py to be TF1/TF2 compatible and remove losses_test_v2.py -- 308361472 by rathodv: Update core/matcher_test.py to be TF1/TF2 compatible. -- 308335846 by Zhichao Lu: Updated the COCO evaluation logics and populated the groundturth area information through. This change matches the groundtruth format expected by the COCO keypoint evaluation. -- 308256924 by rathodv: Update core/keypoints_ops_test.py to be TF1/TF2 compatible. -- 308256826 by rathodv: Update class_agnostic_nms_test.py to be TF1/TF2 compatible. -- 308256112 by rathodv: Update box_list_ops_test.py to be TF1/TF2 compatible. -- 308159360 by Zhichao Lu: Internal change 308145008 by Zhichao Lu: Added 'image/class/confidence' field in the TFExample decoder. -- 307651875 by rathodv: Refactor core/box_list.py to support TF1/TF2. -- 307651798 by rathodv: Modify box_coder.py base class to work with with TF1/TF2 -- 307651652 by rathodv: Refactor core/balanced_positive_negative_sampler.py to support TF1/TF2. -- 307651571 by rathodv: Modify BoxCoders tests to use test_case:execute method to allow testing with TF1.X and TF2.X -- 307651480 by rathodv: Modify Matcher tests to use test_case:execute method to allow testing with TF1.X and TF2.X -- 307651409 by rathodv: Modify AnchorGenerator tests to use test_case:execute method to allow testing with TF1.X and TF2.X -- 307651314 by rathodv: Refactor model_builder to support TF1 or TF2 models based on TensorFlow version. -- 307092053 by Zhichao Lu: Use manager to save checkpoint. -- 307071352 by ronnyvotel: Fixing keypoint visibilities. Now by default, the visibility is marked True if the keypoint is labeled (regardless of whether it is visible or not). Also, if visibilities are not present in the dataset, they will be created based on whether the keypoint coordinates are finite (vis = True) or NaN (vis = False). -- 307069557 by Zhichao Lu: Internal change to add few fields related to postprocessing parameters in center_net.proto and populate those parameters to the keypoint postprocessing functions. -- 307012091 by Zhichao Lu: Make Adam Optimizer's epsilon proto configurable. Potential issue: tf.compat.v1's AdamOptimizer has a default epsilon on 1e-08 ([doc-link](https://www.tensorflow.org/api_docs/python/tf/compat/v1/train/AdamOptimizer)) whereas tf.keras's AdamOptimizer has default epsilon 1e-07 ([doc-link](https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/Adam)) -- 306858598 by Zhichao Lu: Internal changes to update the CenterNet model: 1) Modified eval job loss computation to avoid averaging over batches with zero loss. 2) Updated CenterNet keypoint heatmap target assigner to apply box size to heatmap Guassian standard deviation. 3) Updated the CenterNet meta arch keypoint losses computation to apply weights outside of loss function. -- 306731223 by jonathanhuang: Internal change. -- 306549183 by rathodv: Internal Update. -- 306542930 by rathodv: Internal Update -- 306322697 by rathodv: Internal. -- 305345036 by Zhichao Lu: Adding COCO Camera Traps Json to tf.Example beam code -- 304104869 by lzc: Internal changes. -- 304068971 by jonathanhuang: Internal change. -- 304050469 by Zhichao Lu: Internal change. -- 303880642 by huizhongc: Support parsing partially labeled groundtruth. -- 303841743 by Zhichao Lu: Deprecate nms_on_host in SSDMetaArch. -- 303803204 by rathodv: Internal change. -- 303793895 by jonathanhuang: Internal change. -- 303467631 by rathodv: Py3 update for detection inference test. -- 303444542 by rathodv: Py3 update to metrics module -- 303421960 by rathodv: Update json_utils to python3. -- 302787583 by ronnyvotel: Coco results generator for submission to the coco test server. -- 302719091 by Zhichao Lu: Internal change to add the ResNet50 image feature extractor for CenterNet model. -- 302116230 by Zhichao Lu: Added the functions to overlay the heatmaps with images in visualization util library. -- 301888316 by Zhichao Lu: Fix checkpoint_filepath not defined error. -- 301840312 by ronnyvotel: Adding keypoint_scores to visualizations. -- 301683475 by ronnyvotel: Introducing the ability to preprocess `keypoint_visibilities`. Some data augmentation ops such as random crop can filter instances and keypoints. It's important to also filter keypoint visibilities, so that the groundtruth tensors are always in alignment. -- 301532344 by Zhichao Lu: Don't use tf.divide since "Quantization not yet supported for op: DIV" -- 301480348 by ronnyvotel: Introducing keypoint evaluation into model lib v2. Also, making some fixes to coco keypoint evaluation. -- 301454018 by Zhichao Lu: Added the image summary to visualize the train/eval input images and eval's prediction/groundtruth side-by-side image. -- 301317527 by Zhichao Lu: Updated the random_absolute_pad_image function in the preprocessor library to support the keypoints argument. -- 301300324 by Zhichao Lu: Apply name change(experimental_run_v2 -> run) for all callers in Tensorflow. -- 301297115 by ronnyvotel: Utility function for setting keypoint visibilities based on keypoint coordinates. -- 301248885 by Zhichao Lu: Allow MultiworkerMirroredStrategy(MWMS) use by adding checkpoint handling with temporary directories in model_lib_v2. Added missing WeakKeyDictionary cfer_fn_cache field in CollectiveAllReduceStrategyExtended. -- 301224559 by Zhichao Lu: ...1) Fixes model_lib to also use keypoints while preparing model groundtruth. ...2) Tests model_lib with newly added keypoint metrics config. -- 300836556 by Zhichao Lu: Internal changes to add keypoint estimation parameters in CenterNet proto. -- 300795208 by Zhichao Lu: Updated the eval_util library to populate the keypoint groundtruth to eval_dict. -- 299474766 by Zhichao Lu: ...Modifies eval_util to create Keypoint Evaluator objects when configured in eval config. -- 299453920 by Zhichao Lu: Add swish activation as a hyperperams option. -- 299240093 by ronnyvotel: Keypoint postprocessing for CenterNetMetaArch. -- 299176395 by Zhichao Lu: Internal change. -- 299135608 by Zhichao Lu: Internal changes to refactor the CenterNet model in preparation for keypoint estimation tasks. -- 298915482 by Zhichao Lu: Make dataset_builder aware of input_context for distributed training. -- 298713595 by Zhichao Lu: Handling data with negative size boxes. -- 298695964 by Zhichao Lu: Expose change_coordinate_frame as a config parameter; fix multiclass_scores optional field. -- 298492150 by Zhichao Lu: Rename optimizer_builder_test_v2.py -> optimizer_builder_v2_test.py -- 298476471 by Zhichao Lu: Internal changes to support CenterNet keypoint estimation. -- 298365851 by ronnyvotel: Fixing a bug where groundtruth_keypoint_weights were being padded with a dynamic dimension. -- 297843700 by Zhichao Lu: Internal change. -- 297706988 by lzc: Internal change. -- 297705287 by ronnyvotel: Creating the "snapping" behavior in CenterNet, where regressed keypoints are refined with updated candidate keypoints from a heatmap. -- 297700447 by Zhichao Lu: Improve checkpoint checking logic with TF2 loop. -- 297686094 by Zhichao Lu: Convert "import tensorflow as tf" to "import tensorflow.compat.v1". -- 297670468 by lzc: Internal change. -- 297241327 by Zhichao Lu: Convert "import tensorflow as tf" to "import tensorflow.compat.v1". -- 297205959 by Zhichao Lu: Internal changes to support refactored the centernet object detection target assigner into a separate library. -- 297143806 by Zhichao Lu: Convert "import tensorflow as tf" to "import tensorflow.compat.v1". -- 297129625 by Zhichao Lu: Explicitly replace "import tensorflow" with "tensorflow.compat.v1" for TF2.x migration -- 297117070 by Zhichao Lu: Explicitly replace "import tensorflow" with "tensorflow.compat.v1" for TF2.x migration -- 297030190 by Zhichao Lu: Add configuration options for visualizing keypoint edges -- 296359649 by Zhichao Lu: Support DepthwiseConv2dNative (of separable conv) in weight equalization loss. -- 296290582 by Zhichao Lu: Internal change. -- 296093857 by Zhichao Lu: Internal changes to add general target assigner utilities. -- 295975116 by Zhichao Lu: Fix visualize_boxes_and_labels_on_image_array to show max_boxes_to_draw correctly. -- 295819711 by Zhichao Lu: Adds a flag to visualize_boxes_and_labels_on_image_array to skip the drawing of axis aligned bounding boxes. -- 295811929 by Zhichao Lu: Keypoint support in random_square_crop_by_scale. -- 295788458 by rathodv: Remove unused checkpoint to reduce repo size on github -- 295787184 by Zhichao Lu: Enable visualization of edges between keypoints -- 295763508 by Zhichao Lu: [Context RCNN] Add an option to enable / disable cropping feature in the post process step in the meta archtecture. -- 295605344 by Zhichao Lu: internal change. -- 294926050 by ronnyvotel: Adding per-keypoint groundtruth weights. These weights are intended to be used as multipliers in a keypoint loss function. Groundtruth keypoint weights are constructed as follows: - Initialize the weight for each keypoint type based on user-specified weights in the input_reader proto - Mask out (i.e. make zero) all keypoint weights that are not visible. -- 294829061 by lzc: Internal change. -- 294566503 by Zhichao Lu: Changed internal CenterNet Model configuration. -- 294346662 by ronnyvotel: Using NaN values in keypoint coordinates that are not visible. -- 294333339 by Zhichao Lu: Change experimetna_distribute_dataset -> experimental_distribute_dataset_from_function -- 293928752 by Zhichao Lu: Internal change -- 293909384 by Zhichao Lu: Add capabilities to train 1024x1024 CenterNet models. -- 293637554 by ronnyvotel: Adding keypoint visibilities to TfExampleDecoder. -- 293501558 by lzc: Internal change. -- 293252851 by Zhichao Lu: Change tf.gfile.GFile to tf.io.gfile.GFile. -- 292730217 by Zhichao Lu: Internal change. -- 292456563 by lzc: Internal changes. -- 292355612 by Zhichao Lu: Use tf.gather and tf.scatter_nd instead of matrix ops. -- 292245265 by rathodv: Internal -- 291989323 by richardmunoz: Refactor out building a DataDecoder from building a tf.data.Dataset. -- 291950147 by Zhichao Lu: Flip bounding boxes in arbitrary shaped tensors. -- 291401052 by huizhongc: Fix multiscale grid anchor generator to allow fully convolutional inference. When exporting model with identity_resizer as image_resizer, there is an incorrect box offset on the detection results. We add the anchor offset to address this problem. -- 291298871 by Zhichao Lu: Py3 compatibility changes. -- 290957957 by Zhichao Lu: Hourglass feature extractor for CenterNet. -- 290564372 by Zhichao Lu: Internal change. -- 290155278 by rathodv: Remove Dataset Explorer. -- 290155153 by Zhichao Lu: Internal change -- 290122054 by Zhichao Lu: Unify the format in the faster_rcnn.proto -- 290116084 by Zhichao Lu: Deprecate tensorflow.contrib. -- 290100672 by Zhichao Lu: Update MobilenetV3 SSD candidates -- 289926392 by Zhichao Lu: Internal change -- 289553440 by Zhichao Lu: [Object Detection API] Fix the comments about the dimension of the rpn_box_encodings from 4-D to 3-D. -- 288994128 by lzc: Internal changes. -- 288942194 by lzc: Internal change. -- 288746124 by Zhichao Lu: Configurable channel mean/std. dev in CenterNet feature extractors. -- 288552509 by rathodv: Internal. -- 288541285 by rathodv: Internal update. -- 288396396 by Zhichao Lu: Make object detection import contrib explicitly -- 288255791 by rathodv: Internal -- 288078600 by Zhichao Lu: Fix model_lib_v2 test -- 287952244 by rathodv: Internal -- 287921774 by Zhichao Lu: internal change -- 287906173 by Zhichao Lu: internal change -- 287889407 by jonathanhuang: PY3 compatibility -- 287889042 by rathodv: Internal -- 287876178 by Zhichao Lu: Internal change. -- 287770490 by Zhichao Lu: Add CenterNet proto and builder -- 287694213 by Zhichao Lu: Support for running multiple steps per tf.function call. -- 287377183 by jonathanhuang: PY3 compatibility -- 287371344 by rathodv: Support loading keypoint labels and ids. -- 287368213 by rathodv: Add protos supporting keypoint evaluation. -- 286673200 by rathodv: dataset_tools PY3 migration -- 286635106 by Zhichao Lu: Update code for upcoming tf.contrib removal -- 286479439 by Zhichao Lu: Internal change -- 286311711 by Zhichao Lu: Skeleton of context model within TFODAPI -- 286005546 by Zhichao Lu: Fix Faster-RCNN training when using keep_aspect_ratio_resizer with pad_to_max_dimension -- 285906400 by derekjchow: Internal change -- 285822795 by Zhichao Lu: Add CenterNet meta arch target assigners. -- 285447238 by Zhichao Lu: Internal changes. -- 285016927 by Zhichao Lu: Make _dummy_computation a tf.function. This fixes breakage caused by cl/284256438 -- 284827274 by Zhichao Lu: Convert to python 3. -- 284645593 by rathodv: Internal change -- 284639893 by rathodv: Add missing documentation for keypoints in eval_util.py. -- 284323712 by Zhichao Lu: Internal changes. -- 284295290 by Zhichao Lu: Updating input config proto and dataset builder to include context fields Updating standard_fields and tf_example_decoder to include context features -- 284226821 by derekjchow: Update exporter. -- 284211030 by Zhichao Lu: API changes in CenterNet informed by the experiments with hourlgass network. -- 284190451 by Zhichao Lu: Add support for CenterNet losses in protos and builders. -- 284093961 by lzc: Internal changes. -- 284028174 by Zhichao Lu: Internal change -- 284014719 by derekjchow: Do not pad top_down feature maps unnecessarily. -- 284005765 by Zhichao Lu: Add new pad_to_multiple_resizer -- 283858233 by Zhichao Lu: Make target assigner work when under tf.function. -- 283836611 by Zhichao Lu: Make config getters more general. -- 283808990 by Zhichao Lu: Internal change -- 283754588 by Zhichao Lu: Internal changes. -- 282460301 by Zhichao Lu: Add ability to restore v2 style checkpoints. -- 281605842 by lzc: Add option to disable loss computation in OD API eval job. -- 280298212 by Zhichao Lu: Add backwards compatible change -- 280237857 by Zhichao Lu: internal change -- PiperOrigin-RevId: 310447280
-
- 30 Nov, 2018 1 commit
-
-
Zhichao Lu authored
223075771 by lzc: Bring in external fixes. -- 222919755 by ronnyvotel: Bug fix in faster r-cnn model builder. Was previously using `inplace_batchnorm_update` for `reuse_weights`. -- 222885680 by Zhichao Lu: Use the result_dict_for_batched_example in models_lib Also fixes the visualization size on when eval is on GPU -- 222883648 by Zhichao Lu: Fix _unmatched_class_label for the _add_background_class == False case in ssd_meta_arch.py. -- 222836663 by Zhichao Lu: Adding support for visualizing grayscale images. Without this change, the images are black-red instead of grayscale. -- 222501978 by Zhichao Lu: Fix a bug that caused convert_to_grayscale flag not to be respected. -- 222432846 by richardmunoz: Fix mapping of groundtruth_confidences from shape [num_boxes] to [num_boxes, num_classes] when the input contains the groundtruth_confidences field. -- 221725755 by richardmunoz: Internal change. -- 221458536 by Zhichao Lu: Fix saver defer build bug in object detection train codepath. -- 221391590 by Zhichao Lu: Add support for group normalization in the object detection API. Just adding MobileNet-v1 SSD currently. This may serve as a road map for other models that wish to support group normalization as an option. -- 221367993 by Zhichao Lu: Bug fixes (1) Make RandomPadImage work, (2) Fix keep_checkpoint_every_n_hours. -- 221266403 by rathodv: Use detection boxes as proposals to compute correct mask loss in eval jobs. -- 220845934 by lzc: Internal change. -- 220778850 by Zhichao Lu: Incorporating existing metrics into Estimator framework. Should restore: -oid_challenge_detection_metrics -pascal_voc_detection_metrics -weighted_pascal_voc_detection_metrics -pascal_voc_instance_segmentation_metrics -weighted_pascal_voc_instance_segmentation_metrics -oid_V2_detection_metrics -- 220370391 by alirezafathi: Adding precision and recall to the metrics. -- 220321268 by Zhichao Lu: Allow the option of setting max_examples_to_draw to zero. -- 220193337 by Zhichao Lu: This CL fixes a bug where the Keras convolutional box predictor was applying heads in the non-deterministic dict order. The consequence of this bug was that variables were created in non-deterministic orders. This in turn led different workers in a multi-gpu training setup to have slightly different graphs which had variables assigned to mismatched parameter servers. As a result, roughly half of all workers were unable to initialize and did no work, and training time was slowed down approximately 2x. -- 220136508 by huizhongc: Add weight equalization loss to SSD meta arch. -- 220125875 by pengchong: Rename label_scores to label_weights -- 219730108 by Zhichao Lu: Add description of detection_keypoints in postprocessed_tensors to docstring. -- 219577519 by pengchong: Support parsing the class confidences and training using them. -- 219547611 by lzc: Stop using static shapes in GPU eval jobs. -- 219536476 by Zhichao Lu: Migrate TensorFlow Lite out of tensorflow/contrib This change moves //tensorflow/contrib/lite to //tensorflow/lite in preparation for TensorFlow 2.0's deprecation of contrib/. If you refer to TF Lite build targets or headers, you will need to update them manually. If you use TF Lite from the TensorFlow python package, "tf.contrib.lite" now points to "tf.lite". Please update your imports as soon as possible. For more details, see https://groups.google.com/a/tensorflow.org/forum/#!topic/tflite/iIIXOTOFvwQ @angersson and @aselle are conducting this migration. Please contact them if you have any further questions. -- 219190083 by Zhichao Lu: Add a second expected_loss_weights function using an alternative expectation calculation compared to previous. Integrate this op into ssd_meta_arch and losses builder. Affects files that use losses_builder.build to handle the returning of an additional element. -- 218924451 by pengchong: Add a new way to assign training targets using groundtruth confidences. -- 218760524 by chowdhery: Modify export script to add option for regular NMS in TFLite post-processing op. -- PiperOrigin-RevId: 223075771
-
- 02 Nov, 2018 1 commit
-
-
pkulzc authored
* Internal change. PiperOrigin-RevId: 213914693 * Add original_image_spatial_shape tensor in input dictionary to store shape of the original input image PiperOrigin-RevId: 214018767 * Remove "groundtruth_confidences" from decoders use "groundtruth_weights" to indicate label confidence. This also solves a bug that only surfaced now - random crop routines in core/preprocessor.py did not correctly handle "groundtruth_weight" tensors returned by the decoders. PiperOrigin-RevId: 214091843 * Update CocoMaskEvaluator to allow for a batch of image info, rather than a single image. PiperOrigin-RevId: 214295305 * Adding the option to be able to summarize gradients. PiperOrigin-RevId: 214310875 * Adds FasterRCNN inference on CPU 1. Adds a flag use_static_shapes_for_eval to restrict to the ops that guarantees static shape. 2. No filtering of overlapping anchors while clipping the anchors when use_static_shapes_for_eval is set to True. 3. Adds test for faster_rcnn_meta_arch for predict and postprocess in inference mode for first and second stages. PiperOrigin-RevId: 214329565 * Fix model_lib eval_spec_names assignment (integer->string). PiperOrigin-RevId: 214335461 * Refactor Mask HEAD to optionally upsample after applying convolutions on ROI crops. PiperOrigin-RevId: 214338440 * Uses final_exporter_name as exporter_name for the first eval spec for backward compatibility. PiperOrigin-RevId: 214522032 * Add reshaped `mask_predictions` tensor to the prediction dictionary in `_predict_third_stage` method to allow computing mask loss in eval job. PiperOrigin-RevId: 214620716 * Add support for fully conv training to fpn. PiperOrigin-RevId: 214626274 * Fix the proprocess() function in Resnet v1 to make it work for any number of input channels. Note: If the #channels != 3, this will simply skip the mean subtraction in preprocess() function. PiperOrigin-RevId: 214635428 * Wrap result_dict_for_single_example in eval_util to run for batched examples. PiperOrigin-RevId: 214678514 * Adds PNASNet-based (ImageNet model) feature extractor for SSD. PiperOrigin-RevId: 214988331 * Update documentation PiperOrigin-RevId: 215243502 * Correct index used to compute number of groundtruth/detection boxes in COCOMaskEvaluator. Due to an incorrect indexing in cl/214295305 only the first detection mask and first groundtruth mask for a given image are fed to the COCO Mask evaluation library. Since groundtruth masks are arranged in no particular order, the first and highest scoring detection mask (detection masks are ordered by score) won't match the the first and only groundtruth retained in all cases. This is I think why mask evaluation metrics do not get better than ~11 mAP. Note that this code path is only active when using model_main.py binary for evaluation. This change fixes the indices and modifies an existing test case to cover it. PiperOrigin-RevId: 215275936 * Fixing grayscale_image_resizer to accept mask as input. PiperOrigin-RevId: 215345836 * Add an option not to clip groundtruth boxes during preprocessing. Clipping boxes adversely affects training for partially occluded or large objects, especially for fully conv models. Clipping already occurs during postprocessing, and should not occur during training. PiperOrigin-RevId: 215613379 * Always return recalls and precisions with length equal to the number of classes. The previous behavior of ObjectDetectionEvaluation was somewhat dangerous: when no groundtruth boxes were present, the lists of per-class precisions and recalls were simply truncated. Unless you were aware of this phenomenon (and consulted the `num_gt_instances_per_class` vector) it was difficult to associate each metric with each class. PiperOrigin-RevId: 215633711 * Expose the box feature node in SSD. PiperOrigin-RevId: 215653316 * Fix ssd mobilenet v2 _CONV_DEFS overwriting issue. PiperOrigin-RevId: 215654160 * More documentation updates PiperOrigin-RevId: 215656580 * Add pooling + residual option in multi_resolution_feature_maps. It adds an average pooling and a residual layer between feature maps with matching depth. Designed to be used with WeightSharedBoxPredictor. PiperOrigin-RevId: 215665619 * Only call create_modificed_mobilenet_config on init if use_depthwise is true. PiperOrigin-RevId: 215784290 * Only call create_modificed_mobilenet_config on init if use_depthwise is true. PiperOrigin-RevId: 215837524 * Don't prune keypoints if clip_boxes is false. PiperOrigin-RevId: 216187642 * Makes sure "key" field exists in the result dictionary. PiperOrigin-RevId: 216456543 * Add add_background_class parameter to allow disabling the inclusion of a background class. PiperOrigin-RevId: 216567612 * Update expected_classification_loss_under_sampling to better account for expected sampling. PiperOrigin-RevId: 216712287 * Let the evaluation receive a evaluation class in its constructor. PiperOrigin-RevId: 216769374 * This CL adds model building & training support for end-to-end Keras-based SSD models. If a Keras feature extractor's name is specified in the model config (e.g. 'ssd_mobilenet_v2_keras'), the model will use that feature extractor and a corresponding Keras-based box predictor. This CL makes sure regularization losses & batch norm updates work correctly when training models that have Keras-based components. It also updates the default hyperparameter settings of the keras-based mobilenetV2 (when not overriding hyperparams) to more closely match the legacy Slim training scope. PiperOrigin-RevId: 216938707 * Adding the ability in the coco evaluator to indicate whether an image has been annotated. For a non-annotated image, detections and groundtruth are not supplied. PiperOrigin-RevId: 217316342 * Release the 8k minival dataset ids for MSCOCO, used in Huang et al. "Speed/accuracy trade-offs for modern convolutional object detectors" (https://arxiv.org/abs/1611.10012) PiperOrigin-RevId: 217549353 * Exposes weighted_sigmoid_focal loss for faster rcnn classifier PiperOrigin-RevId: 217601740 * Add detection_features to output nodes. The shape of the feature is [batch_size, max_detections, depth]. PiperOrigin-RevId: 217629905 * FPN uses a custom NN resize op for TPU-compatibility. Replace this op with the Tensorflow version at export time for TFLite-compatibility. PiperOrigin-RevId: 217721184 * Compute `num_groundtruth_boxes` in inputs.tranform_input_data_fn after data augmentation instead of decoders. PiperOrigin-RevId: 217733432 * 1. Stop gradients from flowing into groundtruth masks with zero paddings. 2. Normalize pixelwise cross entropy loss across the whole batch. PiperOrigin-RevId: 217735114 * Optimize Input pipeline for Mask R-CNN on TPU with blfoat16: improve the step time from: 1663.6 ms -> 1184.2 ms, about 28.8% improvement. PiperOrigin-RevId: 217748833 * Fixes to export a TPU compatible model Adds nodes to each of the output tensor. Also increments the value of class labels by 1. PiperOrigin-RevId: 217856760 * API changes: - change the interface of target assigner to return per-class weights. - change the interface of classification loss to take per-class weights. PiperOrigin-RevId: 217968393 * Add an option to override pipeline config in export_saved_model using command line arg PiperOrigin-RevId: 218429292 * Include Quantized trained MobileNet V2 SSD and FaceSsd in model zoo. PiperOrigin-RevId: 218530947 * Write final config to disk in `train` mode only. PiperOrigin-RevId: 218735512
-
- 21 Sep, 2018 2 commits
-
-
pkulzc authored
214018767 by Zhichao Lu: Add original_image_spatial_shape tensor in input dictionary to store shape of the original input image -- 213914693 by lzc: Internal change. -- 213872175 by Zhichao Lu: This CL adds a Keras-based mobilenet_v2 feature extractor for object detection models. As part of this CL, we use the Keras mobilenet_v2 application's keyword argument layer injection API to allow the generated network to support the object detection hyperparameters. -- 213848499 by Zhichao Lu: Replace tf.image.resize_nearest_neighbor with tf.image.resize_images. tf.image.resize_nearest_neighbor only supports 4-D tensors but masks is a 3-D tensor. -- 213758622 by lzc: Internal change. -- PiperOrigin-RevId: 214018767 -
pkulzc authored
Release iNaturalist Species-trained models, refactor of evaluation, box predictor for object detection. (#5289) * Merged commit includes the following changes: 212389173 by Zhichao Lu: 1. Replace tf.boolean_mask with tf.where -- 212282646 by Zhichao Lu: 1. Fix a typo in model_builder.py and add a test to cover it. -- 212142989 by Zhichao Lu: Only resize masks in meta architecture if it has not already been resized in the input pipeline. -- 212136935 by Zhichao Lu: Choose matmul or native crop_and_resize in the model builder instead of faster r-cnn meta architecture. -- 211907984 by Zhichao Lu: Make eval input reader repeated field and update config util to handle this field. -- 211858098 by Zhichao Lu: Change the implementation of merge_boxes_with_multiple_labels. -- 211843915 by Zhichao Lu: Add Mobilenet v2 + FPN support. -- 211655076 by Zhichao Lu: Bug fix for generic keys in config overrides In generic configuration overrides, we had a duplicate entry for train_input_config and we were missing the eval_input_config and eval_config. This change also introduces testing for all config overrides. -- 211157501 by Zhichao Lu: Make the locally-modified conv defs a copy. So that it doesn't modify MobileNet conv defs globally for other code that transitively imports this package. -- 211112813 by Zhichao Lu: Refactoring visualization tools for Estimator's eval_metric_ops. This will make it easier for future models to take advantage of a single interface and mechanics. -- 211109571 by Zhichao Lu: A test decorator. -- 210747685 by Zhichao Lu: For FPN, when use_depthwise is set to true, use slightly modified mobilenet v1 config. -- 210723882 by Zhichao Lu: Integrating the losses mask into the meta architectures. When providing groundtruth, one can optionally specify annotation information (i.e. which images are labeled vs. unlabeled). For any image that is unlabeled, there is no loss accumulation. -- 210673675 by Zhichao Lu: Internal change. -- 210546590 by Zhichao Lu: Internal change. -- 210529752 by Zhichao Lu: Support batched inputs with ops.matmul_crop_and_resize. With this change the new inputs are images of shape [batch, heigh, width, depth] and boxes of shape [batch, num_boxes, 4]. The output tensor is of the shape [batch, num_boxes, crop_height, crop_width, depth]. -- 210485912 by Zhichao Lu: Fix TensorFlow version check in object_detection_tutorial.ipynb -- 210484076 by Zhichao Lu: Reduce TPU memory required for single image matmul_crop_and_resize. Using tf.einsum eliminates intermediate tensors, tiling and expansion. for an image of size [40, 40, 1024] and boxes of shape [300, 4] HBM memory usage goes down from 3.52G to 1.67G. -- 210468361 by Zhichao Lu: Remove PositiveAnchorLossCDF/NegativeAnchorLossCDF to resolve "Main thread is not in main loop error" issue in local training. -- 210100253 by Zhichao Lu: Pooling pyramid feature maps: add option to replace max pool with convolution layers. -- 209995842 by Zhichao Lu: Fix a bug which prevents variable sharing in Faster RCNN. -- 209965526 by Zhichao Lu: Add support for enabling export_to_tpu through the estimator. -- 209946440 by Zhichao Lu: Replace deprecated tf.train.Supervisor with tf.train.MonitoredSession. MonitoredSession also takes away the hassle of starting queue runners. -- 209888003 by Zhichao Lu: Implement function to handle data where source_id is not set. If the field source_id is found to be the empty string for any image during runtime, it will be replaced with a random string. This avoids hash-collisions on dataset where many examples do not have source_id set. Those hash-collisions have unintended site effects and may lead to bugs in the detection pipeline. -- 209842134 by Zhichao Lu: Converting loss mask into multiplier, rather than using it as a boolean mask (which changes tensor shape). This is necessary, since other utilities (e.g. hard example miner) require a loss matrix with the same dimensions as the original prediction tensor. -- 209768066 by Zhichao Lu: Adding ability to remove loss computation from specific images in a batch, via an optional boolean mask. -- 209722556 by Zhichao Lu: Remove dead code. (_USE_C_API was flipped to True by default in TensorFlow 1.8) -- 209701861 by Zhichao Lu: This CL cleans-up some tf.Example creation snippets, by reusing the convenient tf.train.Feature building functions in dataset_util. -- 209697893 by Zhichao Lu: Do not overwrite num_epoch for eval input. This leads to errors in some cases. -- 209694652 by Zhichao Lu: Sample boxes by jittering around the currently given boxes. -- 209550300 by Zhichao Lu: `create_category_index_from_labelmap()` function now accepts `use_display_name` parameter. Also added create_categories_from_labelmap function for convenience -- 209490273 by Zhichao Lu: Check result_dict type before accessing image_id via key. -- 209442529 by Zhichao Lu: Introducing the capability to sample examples for evaluation. This makes it easy to specify one full epoch of evaluation, or a subset (e.g. sample 1 of every N examples). -- 208941150 by Zhichao Lu: Adding the capability of exporting the results in json format. -- 208888798 by Zhichao Lu: Fixes wrong dictionary key for num_det_boxes_per_image. -- 208873549 by Zhichao Lu: Reduce the number of HLO ops created by matmul_crop_and_resize. Do not unroll along the channels dimension. Instead, transpose the input image dimensions, apply tf.matmul and transpose back. The number of HLO instructions for 1024 channels reduce from 12368 to 110. -- 208844315 by Zhichao Lu: Add an option to use tf.non_maximal_supression_padded in SSD post-process -- 208731380 by Zhichao Lu: Add field in box_predictor config to enable mask prediction and update builders accordingly. -- 208699405 by Zhichao Lu: This CL creates a keras-based multi-resolution feature map extractor. -- 208557208 by Zhichao Lu: Add TPU tests for Faster R-CNN Meta arch. * Tests that two_stage_predict and total_loss tests run successfully on TPU. * Small mods to multiclass_non_max_suppression to preserve static shapes. -- 208499278 by Zhichao Lu: This CL makes sure the Keras convolutional box predictor & head layers apply activation layers *after* normalization (as opposed to before). -- 208391694 by Zhichao Lu: Updating visualization tool to produce multiple evaluation images. -- 208275961 by Zhichao Lu: This CL adds a Keras version of the Convolutional Box Predictor, as well as more general infrastructure for making Keras Prediction heads & Keras box predictors. -- 208275585 by Zhichao Lu: This CL enables the Keras layer hyperparameter object to build a dedicated activation layer, and to disable activation by default in the op layer construction kwargs. This is necessary because in most cases the normalization layer must be applied before the activation layer. So, in Keras models we must set the convolution activation in a dedicated layer after normalization is applied, rather than setting it in the convolution layer construction args. -- 208263792 by Zhichao Lu: Add a new SSD mask meta arch that can predict masks for SSD models. Changes including: - overwrite loss function to add mask loss computation. - update ssd_meta_arch to handle masks if predicted in predict and postprocessing. -- 208000218 by Zhichao Lu: Make FasterRCNN choose static shape operations only in training mode. -- 207997797 by Zhichao Lu: Add static boolean_mask op to box_list_ops.py and use that in faster_rcnn_meta_arch.py to support use_static_shapes option. -- 207993460 by Zhichao Lu: Include FGVC detection models in model zoo. -- 207971213 by Zhichao Lu: remove the restriction to run tf.nn.top_k op on CPU -- 207961187 by Zhichao Lu: Build the first stage NMS function in the model builder and pass it to FasterRCNN meta arch. -- 207960608 by Zhichao Lu: Internal Change. -- 207927015 by Zhichao Lu: Have an option to use the TPU compatible NMS op cl/206673787, in the batch_multiclass_non_max_suppression function. On setting pad_to_max_output_size to true, the output nmsed boxes are padded to be of length max_size_per_class. This can be used in first stage Region Proposal Network in FasterRCNN model by setting the first_stage_nms_pad_to_max_proposals field to true in config proto. -- 207809668 by Zhichao Lu: Add option to use depthwise separable conv instead of conv2d in FPN and WeightSharedBoxPredictor. More specifically, there are two related configs: - SsdFeatureExtractor.use_depthwise - WeightSharedConvolutionalBoxPredictor.use_depthwise -- 207808651 by Zhichao Lu: Fix the static balanced positive negative sampler's TPU tests -- 207798658 by Zhichao Lu: Fixes a post-refactoring bug where the pre-prediction convolution layers in the convolutional box predictor are ignored. -- 207796470 by Zhichao Lu: Make slim endpoints visible in FasterRCNNMetaArch. -- 207787053 by Zhichao Lu: Refactor ssd_meta_arch so that the target assigner instance is passed into the SSDMetaArch constructor rather than constructed inside. -- PiperOrigin-RevId: 212389173 * Fix detection model zoo typo. * Modify tf example decoder to handle label maps with either `display_name` or `name` fields seamlessly. Currently, tf example decoder uses only `name` field to look up ids for class text field present in the data. This change uses both `display_name` and `name` fields in the label map to fetch ids for class text. PiperOrigin-RevId: 212672223 * Modify create_coco_tf_record tool to write out class text instead of class labels. PiperOrigin-RevId: 212679112 * Fix detection model zoo typo. PiperOrigin-RevId: 212715692 * Adding the following two optional flags to WeightSharedConvolutionalBoxHead: 1) In the box head, apply clipping to box encodings in the box head. 2) In the class head, apply sigmoid to class predictions at inference time. PiperOrigin-RevId: 212723242 * Support class confidences in merge boxes with multiple labels. PiperOrigin-RevId: 212884998 * Creates multiple eval specs for object detection. PiperOrigin-RevId: 212894556 * Set batch_norm on last layer in Mask Head to None. PiperOrigin-RevId: 213030087 * Enable bfloat16 training for object detection models. PiperOrigin-RevId: 213053547 * Skip padding op when unnecessary. PiperOrigin-RevId: 213065869 * Modify `Matchers` to use groundtruth weights before performing matching. Groundtruth weights tensor is used to indicate padding in groundtruth box tensor. It is handled in `TargetAssigner` by creating appropriate classification and regression target weights based on the groundtruth box each anchor matches to. However, options such as `force_match_all_rows` in `ArgmaxMatcher` force certain anchors to match to groundtruth boxes that are just paddings thereby reducing the number of anchors that could otherwise match to real groundtruth boxes. For single stage models like SSD the effect of this is negligible as there are two orders of magnitude more anchors than the number of padded groundtruth boxes. But for Faster R-CNN and Mask R-CNN where there are only 300 anchors in the second stage, a significant number of these match to groundtruth paddings reducing the number of anchors regressing to real groundtruth boxes degrading the performance severely. Therefore, this change introduces an additional boolean argument `valid_rows` to `Matcher.match` methods and the implementations now ignore such padded groudtruth boxes during matching. PiperOrigin-RevId: 213345395 * Add release note for iNaturalist Species trained models. PiperOrigin-RevId: 213347179 * Fix the bug of uninitialized gt_is_crowd_list variable. PiperOrigin-RevId: 213364858 * ...text exposed to open source public git repo... PiperOrigin-RevId: 213554260
-
- 08 Aug, 2018 1 commit
-
-
pkulzc authored
* Merged commit includes the following changes: 207771702 by Zhichao Lu: Refactoring evaluation utilities so that it is easier to introduce new DetectionEvaluators with eval_metric_ops. -- 207758641 by Zhichao Lu: Require tensorflow version 1.9+ for running object detection API. -- 207641470 by Zhichao Lu: Clip `num_groundtruth_boxes` in pad_input_data_to_static_shapes() to `max_num_boxes`. This prevents a scenario where tensors are sliced to an invalid range in model_lib.unstack_batch(). -- 207621728 by Zhichao Lu: This CL adds a FreezableBatchNorm that inherits from the Keras BatchNormalization layer, but supports freezing the `training` parameter at construction time instead of having to do it in the `call` method. It also adds a method to the `KerasLayerHyperparams` class that will build an appropriate FreezableBatchNorm layer according to the hyperparameter configuration. If batch_norm is disabled, this method returns and Identity layer. These will be used to simplify the conversion to Keras APIs. -- 207610524 by Zhichao Lu: Update anchor generators and box predictors for python3 compatibility. -- 207585122 by Zhichao Lu: Refactoring convolutional box predictor into separate prediction heads. -- 207549305 by Zhichao Lu: Pass all 1s for batch weights if nothing is specified in GT. -- 207336575 by Zhichao Lu: Move the new argument 'target_assigner_instance' to the end of the list of arguments to the ssd_meta_arch constructor for backwards compatibility. -- 207327862 by Zhichao Lu: Enable support for float output in quantized custom op for postprocessing in SSD Mobilenet model. -- 207323154 by Zhichao Lu: Bug fix: change dict.iteritems() to dict.items() -- 207301109 by Zhichao Lu: Integrating expected_classification_loss_under_sampling op as an option in the ssd_meta_arch -- 207286221 by Zhichao Lu: Adding an option to weight regression loss with foreground scores from the ground truth labels. -- 207231739 by Zhichao Lu: Explicitly mentioning the argument names when calling the batch target assigner. -- 207206356 by Zhichao Lu: Add include_trainable_variables field to train config to better handle trainable variables. -- 207135930 by Zhichao Lu: Internal change. -- 206862541 by Zhichao Lu: Do not unpad the outputs from batch_non_max_suppression before sampling. Since BalancedPositiveNegativeSampler takes an indicator for valid positions to sample from we can pass the output from NMS directly into Sampler. -- PiperOrigin-RevId: 207771702 * Remove unused doc.
-
- 01 Aug, 2018 1 commit
-
-
pkulzc authored
* Merged commit includes the following changes: 206852642 by Zhichao Lu: Build the balanced_positive_negative_sampler in the model builder for FasterRCNN. Also adds an option to use the static implementation of the sampler. -- 206803260 by Zhichao Lu: Fixes a misplaced argument in resnet fpn feature extractor. -- 206682736 by Zhichao Lu: This CL modifies the SSD meta architecture to support both Slim-based and Keras-based box predictors, and begins preparation for Keras box predictor support in the other meta architectures. Concretely, this CL adds a new `KerasBoxPredictor` base class and makes the meta architectures appropriately call whichever box predictors they are using. We can switch the non-ssd meta architectures to fully support Keras box predictors once the Keras Convolutional Box Predictor CL is submitted. -- 206669634 by Zhichao Lu: Adds an alternate method for balanced positive negative sampler using static shapes. -- 206643278 by Zhichao Lu: This CL adds a Keras layer hyperparameter configuration object to the hyperparams_builder. It automatically converts from Slim layer hyperparameter configs to Keras layer hyperparameters. Namely, it: - Builds Keras initializers/regularizers instead of Slim ones - sets weights_regularizer/initializer to kernel_regularizer/initializer - converts batchnorm decay to momentum - converts Slim l2 regularizer weights to the equivalent Keras l2 weights This will be used in the conversion of object detection feature extractors & box predictors to newer Tensorflow APIs. -- 206611681 by Zhichao Lu: Internal changes. -- 206591619 by Zhichao Lu: Clip the to shape when the input tensors are larger than the expected padded static shape -- 206517644 by Zhichao Lu: Make MultiscaleGridAnchorGenerator more consistent with MultipleGridAnchorGenerator. -- 206415624 by Zhichao Lu: Make the hardcoded feature pyramid network (FPN) levels configurable for both SSD Resnet and SSD Mobilenet. -- 206398204 by Zhichao Lu: This CL modifies the SSD meta architecture to support both Slim-based and Keras-based feature extractors. This allows us to begin the conversion of object detection to newer Tensorflow APIs. -- 206213448 by Zhichao Lu: Adding a method to compute the expected classification loss by background/foreground weighting. -- 206204232 by Zhichao Lu: Adding the keypoint head to the Mask RCNN pipeline. -- 206200352 by Zhichao Lu: - Create Faster R-CNN target assigner in the model builder. This allows configuring matchers in Target assigner to use TPU compatible ops (tf.gather in this case) without any change in meta architecture. - As a +ve side effect of the refactoring, we can now re-use a single target assigner for all of second stage heads in Faster R-CNN. -- 206178206 by Zhichao Lu: Force ssd feature extractor builder to use keyword arguments so values won't be passed to wrong arguments. -- 206168297 by Zhichao Lu: Updating exporter to use freeze_graph.freeze_graph_with_def_protos rather than a homegrown version. -- 206080748 by Zhichao Lu: Merge external contributions. -- 206074460 by Zhichao Lu: Update to preprocessor to apply temperature and softmax to the multiclass scores on read. -- 205960802 by Zhichao Lu: Fixing a bug in hierarchical label expansion script. -- 205944686 by Zhichao Lu: Update exporter to support exporting quantized model. -- 205912529 by Zhichao Lu: Add a two stage matcher to allow for thresholding by one criteria and then argmaxing on the other. -- 205909017 by Zhichao Lu: Add test for grayscale image_resizer -- 205892801 by Zhichao Lu: Add flag to decide whether to apply batch norm to conv layers of weight shared box predictor. -- 205824449 by Zhichao Lu: make sure that by default mask rcnn box predictor predicts 2 stages. -- 205730139 by Zhichao Lu: Updating warning message to be more explicit about variable size mismatch. -- 205696992 by Zhichao Lu: Remove utils/ops.py's dependency on core/box_list_ops.py. This will allow re-using TPU compatible ops from utils/ops.py in core/box_list_ops.py. -- 205696867 by Zhichao Lu: Refactoring mask rcnn predictor so have each head in a separate file. This CL lets us to add new heads more easily in the future to mask rcnn. -- 205492073 by Zhichao Lu: Refactor R-FCN box predictor to be TPU compliant. - Change utils/ops.py:position_sensitive_crop_regions to operate on single image and set of boxes without `box_ind` - Add a batch version that operations on batches of images and batches of boxes. - Refactor R-FCN box predictor to use the batched version of position sensitive crop regions. -- 205453567 by Zhichao Lu: Fix bug that cannot export inference graph when write_inference_graph flag is True. -- 205316039 by Zhichao Lu: Changing input tensor name. -- 205256307 by Zhichao Lu: Fix model zoo links for quantized model. -- 205164432 by Zhichao Lu: Fixes eval error when label map contains non-ascii characters. -- 205129842 by Zhichao Lu: Adds a option to clip the anchors to the window size without filtering the overlapped boxes in Faster-RCNN -- 205094863 by Zhichao Lu: Update to label map util to allow the option of adding a background class and fill in gaps in the label map. Useful for using multiclass scores which require a complete label map with explicit background label. -- 204989032 by Zhichao Lu: Add tf.prof support to exporter. -- 204825267 by Zhichao Lu: Modify mask rcnn box predictor tests for TPU compatibility. -- 204778749 by Zhichao Lu: Remove score filtering from postprocessing.py and rely on filtering logic in tf.image.non_max_suppression -- 204775818 by Zhichao Lu: Python3 fixes for object_detection. -- 204745920 by Zhichao Lu: Object Detection Dataset visualization tool (documentation). -- 204686993 by Zhichao Lu: Internal changes. -- 204559667 by Zhichao Lu: Refactor box_predictor.py into multiple files. The abstract base class remains in the object_detection/core, The other classes have moved to a separate file each in object_detection/predictors -- 204552847 by Zhichao Lu: Update blog post link. -- 204508028 by Zhichao Lu: Bump down the batch size to 1024 to be a bit more tolerant to OOM and double the number of iterations. This job still converges to 20.5 mAP in 3 hours. -- PiperOrigin-RevId: 206852642 * Add original post-processing back.
-
- 13 Apr, 2018 1 commit
-
-
Zhichao Lu authored
Add option to override base feature extractor hyperparams in SSD models. This would allow us to use the same set of hyperparams for the complete feature extractor (base + new layers) if desired. PiperOrigin-RevId: 191787921
-
- 04 Apr, 2018 1 commit
-
-
Zhichao Lu authored
191649512 by Zhichao Lu: Introduce two parameters in ssd.proto - freeze_batchnorm, inplace_batchnorm_update - and set up slim arg_scopes in ssd_meta_arch.py such that applies it to all batchnorm ops in the predict() method. This centralizes the control of freezing and doing inplace batchnorm updates. -- 191620303 by Zhichao Lu: Modifications to the preprocessor to support multiclass scores -- 191610773 by Zhichao Lu: Adding multiclass_scores to InputDataFields and adding padding for multiclass_scores. -- 191595011 by Zhichao Lu: Contains implementation of the detection metric for the Open Images Challenge. -- 191449408 by Zhichao Lu: Change hyperparams_builder to return a callable so the users can inherit values from outer arg_scopes. This allows us to easily set batch_norm parameters like "is_training" and "inplace_batchnorm_update" for all feature extractors from the base class and propagate it correctly to the nested scopes. -- 191437008 by Zhichao Lu: Contains implementation of the Recall@N and MedianRank@N metrics. -- 191385254 by Zhichao Lu: Add config rewrite flag to eval.py -- 191382500 by Zhichao Lu: Fix bug for config_util. -- PiperOrigin-RevId: 191649512
-
- 27 Feb, 2018 1 commit
-
-
Zhichao Lu authored
187187978 by Zhichao Lu: Only updating hyperparameters if they have non-null values. -- 187097690 by Zhichao Lu: Rewrite some conditions a bit more clearly. -- 187085190 by Zhichao Lu: More informative error message. -- 186935376 by Zhichao Lu: Added option to evaluator.evaluate to use custom evaluator objects. -- 186808249 by Zhichao Lu: Fix documentation re: number of stages. -- 186775014 by Zhichao Lu: Change anchor generator interface to return a list of BoxLists containing anchors for different feature map layers. -- 186729028 by Zhichao Lu: Minor fixes to object detection. -- 186723716 by Zhichao Lu: Fix tf_example_decoder.py initailization issue. -- 186668505 by Zhichao Lu: Remove unused import. -- 186475361 by Zhichao Lu: Update the box predictor interface to return list of predictions - one from each feature map - instead of stacking them into one large tensor. -- 186410844 by Zhichao Lu: Fix PythonPath Dependencies. -- 186365384 by Zhichao Lu: Made some of the functions in exporter public so they can be reused. -- 186341438 by Zhichao Lu: Re-introducing check that label-map-path must be a valid (non-empty) string prior to overwriting pipeline config. -- 186036984 by Zhichao Lu: Adding default hyperparameters and allowing for overriding them via flags. -- 186026006 by Zhichao Lu: Strip `eval_` prefix from name argument give to TPUEstimator.evaluate since it adds the same prefix internally. -- 186016042 by Zhichao Lu: Add an option to evaluate models on training data. -- 185944986 by Zhichao Lu: let _update_label_map_path go through even if the path is empty -- 185860781 by Zhichao Lu: Add random normal initializer option to hyperparams builder. Scale the regression losses outside of the box encoder by adjusting huber loss delta and regression loss weight. -- 185846325 by Zhichao Lu: Add an option to normalize localization loss by the code size(number of box coordinates) in SSD Meta architecture. -- 185761217 by Zhichao Lu: Change multiscale_grid_anchor_generator to return anchors in normalized coordinates by default and add option to configure it. In SSD meta architecture, TargetAssigner operates in normalized coordinate space (i.e, groundtruth boxes are in normalized coordinates) hence we need the option to generate anchors in normalized coordinates. -- 185747733 by Zhichao Lu: Change the smooth L1 localization implementationt to use tf.losses.huber_loss and expose the delta parameter in the proto. -- 185715309 by Zhichao Lu: Obviates the need for prepadding on mobilenet v1 and v2 for fully convolutional models. -- 185685695 by Zhichao Lu: Fix manual stepping schedule to return first rate when there are no boundaries -- 185621650 by Zhichao Lu: Added target assigner proto for configuring negative class weights. -- PiperOrigin-RevId: 187187978
-
- 27 Oct, 2017 1 commit
-
-
Vivek Rathod authored
-
- 21 Sep, 2017 1 commit
-
-
Neal Wu authored
-
- 20 Jun, 2017 1 commit
-
-
Jonathan Huang authored
This works around a bug in earlier proto versions that automatically infer these values to be integer instead of float.
-
- 15 Jun, 2017 1 commit
-
-
derekjchow authored
For details see our paper: "Speed/accuracy trade-offs for modern convolutional object detectors." Huang J, Rathod V, Sun C, Zhu M, Korattikara A, Fathi A, Fischer I, Wojna Z, Song Y, Guadarrama S, Murphy K, CVPR 2017 https://arxiv.org/abs/1611.10012
-