- 09 Jul, 2020 1 commit
-
-
vivek rathod authored
320335495 by rathodv: Remove hparams support form TF1 main binaries as its not available in TF1.15 runtime on cloud ai platform. -- 320278161 by ronnyvotel: Exposing DensePose fields to model libraries. -- 320277319 by rathodv: Remove TPU Name check since TPU is automatically inferred under cloud AI platform. -- 320258215 by rathodv: Internal Change. -- 320245458 by yuhuic: Updated the CenterNet restore_from_objects function to be compatible with existing configs that load converted checkpoints. -- 320225405 by jonathanhuang: Small change to Keras box predictor and box heads to fix export errors for SSD and Faster R-CNN. -- 320145077 by aom: Implements EfficientDet feature extractor. -- PiperOrigin-RevId: 320335495 Co-authored-by:TF Object Detection Team <no-reply@google.com>
-
- 17 Jun, 2020 1 commit
-
-
pkulzc authored
Internal changes -- PiperOrigin-RevId: 316837667
-
- 26 May, 2020 1 commit
-
-
pkulzc authored
* Merged commit includes the following changes: 311933687 by Sergio Guadarrama: Removes spurios use of tf.compat.v2, which results in spurious tf.compat.v1.compat.v2. Adds basic test to nasnet_utils. Replaces all remaining import tensorflow as tf with import tensorflow.compat.v1 as tf -- 311766063 by Sergio Guadarrama: Removes explicit tf.compat.v1 in all call sites (we already import tf.compat.v1, so this code was doing tf.compat.v1.compat.v1). The existing code worked in latest version of tensorflow, 2.2, (and 1.15) but not in 1.14 or in 2.0.0a, this CL fixes it. -- 311624958 by Sergio Guadarrama: Updates README that doesn't render properly in github documentation -- 310980959 by Sergio Guadarrama: Moves research_models/slim off tf.contrib.slim/layers/framework to tf_slim -- 310263156 by Sergio Guadarrama: Adds model breakdown for MobilenetV3 -- 308640516 by Sergio Guadarrama: Internal change 308244396 by Sergio Guadarrama: GroupNormalization support for MobilenetV3. -- 307475800 by Sergio Guadarrama: Internal change -- 302077708 by Sergio Guadarrama: Remove `disable_tf2` behavior from slim py_library targets -- 301208453 by Sergio Guadarrama: Automated refactoring to make code Python 3 compatible. -- 300816672 by Sergio Guadarrama: Internal change 299433840 by Sergio Guadarrama: Internal change 299221609 by Sergio Guadarrama: Explicitly disable Tensorflow v2 behaviors for all TF1.x binaries and tests -- 299179617 by Sergio Guadarrama: Internal change 299040784 by Sergio Guadarrama: Internal change 299036699 by Sergio Guadarrama: Internal change 298736510 by Sergio Guadarrama: Internal change 298732599 by Sergio Guadarrama: Internal change 298729507 by Sergio Guadarrama: Internal change 298253328 by Sergio Guadarrama: Internal change 297788346 by Sergio Guadarrama: Internal change 297785278 by Sergio Guadarrama: Internal change 297783127 by Sergio Guadarrama: Internal change 297725870 by Sergio Guadarrama: Internal change 297721811 by Sergio Guadarrama: Internal change 297711347 by Sergio Guadarrama: Internal change 297708059 by Sergio Guadarrama: Internal change 297701831 by Sergio Guadarrama: Internal change 297700038 by Sergio Guadarrama: Internal change 297670468 by Sergio Guadarrama: Internal change. -- 297350326 by Sergio Guadarrama: Explicitly replace "import tensorflow" with "tensorflow.compat.v1" for TF2.x migration -- 297201668 by Sergio Guadarrama: Explicitly replace "import tensorflow" with "tensorflow.compat.v1" for TF2.x migration -- 294483372 by Sergio Guadarrama: Internal change PiperOrigin-RevId: 311933687 * Merged commit includes the following changes: 312578615 by Menglong Zhu: Modify the LSTM feature extractors to be python 3 compatible. -- 311264357 by Menglong Zhu: Removes contrib.slim -- 308957207 by Menglong Zhu: Automated refactoring to make code Python 3 compatible. -- 306976470 by yongzhe: Internal change 306777559 by Menglong Zhu: Internal change -- 299232507 by lzyuan: Internal update. -- 299221735 by lzyuan: Add small epsilon on max_range for quantize_op to prevent range collapse. -- PiperOrigin-RevId: 312578615 * Merged commit includes the following changes: 310447280 by lzc: Internal changes. -- PiperOrigin-RevId: 310447280 Co-authored-by:Sergio Guadarrama <sguada@google.com> Co-authored-by:
Menglong Zhu <menglong@google.com>
-
- 12 May, 2020 1 commit
-
-
pkulzc authored
310447280 by lzc: Internal change 310420845 by Zhichao Lu: Open source the internal Context RCNN code. -- 310362339 by Zhichao Lu: Internal change 310259448 by lzc: Update required TF version for OD API. -- 310252159 by Zhichao Lu: Port patch_ops_test to TF1/TF2 as TPUs. -- 310247180 by Zhichao Lu: Ignore keypoint heatmap loss in the regions/bounding boxes with target keypoint class but no valid keypoint annotations. -- 310178294 by Zhichao Lu: Opensource MnasFPN https://arxiv.org/abs/1912.01106 -- 310094222 by lzc: Internal changes. -- 310085250 by lzc: Internal Change. -- 310016447 by huizhongc: Remove unrecognized classes from labeled_classes. -- 310009470 by rathodv: Mark batcher.py as TF1 only. -- 310001984 by rathodv: Update core/preprocessor.py to be compatible with TF1/TF2.. -- 309455035 by Zhi...
-
- 15 Jul, 2019 1 commit
-
-
pkulzc authored
257914648 by lzc: Internal changes -- 257525973 by Zhichao Lu: Fixes bug that silently prevents checkpoints from loading when training w/ eager + functions. Also sets up scripts to run training. -- 257296614 by Zhichao Lu: Adding detection_features to model outputs -- 257234565 by Zhichao Lu: Fix wrong order of `classes_with_max_scores` in class-agnostic NMS caused by sorting in partitioned-NMS. -- 257232002 by ronnyvotel: Supporting `filter_nonoverlapping` option in np_box_list_ops.clip_to_window(). -- 257198282 by Zhichao Lu: Adding the focal loss and l1 loss from the Objects as Points paper. -- 257089535 by Zhichao Lu: Create Keras based ssd + resnetv1 + fpn. -- 257087407 by Zhichao Lu: Make object_detection/data_decoders Python3-compatible. -- 257004582 by Zhichao Lu: Updates _decode_raw_data_into_masks_and_boxes to the latest binary masks-to-string encoding format. -- 257002124 by Zhichao Lu: Make object_detection/utils Python3-compatible, except json_utils. The patching trick used in json_utils is not going to work in Python 3. -- 256795056 by lzc: Add a detection_anchor_indices field to detection outputs. -- 256477542 by Zhichao Lu: Make object_detection/core Python3-compatible. -- 256387593 by Zhichao Lu: Edit class_id_function_approximations builder to skip class ids not present in label map. -- 256259039 by Zhichao Lu: Move NMS to TPU for FasterRCNN. -- 256071360 by rathodv: When multiclass_scores is empty, add one-hot encoding of groundtruth_classes as multiclass scores so that data_augmentation ops that expect the presence of multiclass_scores don't have to individually handle this case. Also copy input tensor_dict to out_tensor_dict first to avoid inplace modification. -- 256023645 by Zhichao Lu: Adds the first WIP iterations of TensorFlow v2 eager + functions style custom training & evaluation loops. -- 255980623 by Zhichao Lu: Adds a new data augmentation operation "remap_labels" which remaps a set of labels to a new label. -- 255753259 by Zhichao Lu: Announcement of the released evaluation tutorial for Open Images Challenge 2019. -- 255698776 by lzc: Fix rewrite_nn_resize_op function which was broken by tf forward compatibility movement. -- 255623150 by Zhichao Lu: Add Keras-based ResnetV1 models. -- 255504992 by Zhichao Lu: Fixing the typo in specifying label expansion for ground truth segmentation file. -- 255470768 by Zhichao Lu: 1. Fixing Python bug with parsed arguments. 2. Adding capability to parse relevant columns from CSV header. 3. Fixing bug with duplicated labels expansion. -- 255462432 by Zhichao Lu: Adds a new data augmentation operation "drop_label_probabilistically" which drops a given label with the given probability. This supports experiments on training in the presence of label noise. -- 255441632 by rathodv: Fallback on groundtruth classes when multiclass_scores tensor is empty. -- 255434899 by Zhichao Lu: Ensuring evaluation binary can run even with big files by synchronizing processing of ground truth and predictions: in this way, ground truth is not stored but immediatly used for evaluation. In case gt of object masks, this allows to run evaluations on relatively large sets. -- 255337855 by lzc: Internal change. -- 255308908 by Zhichao Lu: Add comment to clarify usage of calibration parameters proto. -- 255266371 by Zhichao Lu: Ensuring correct processing of the case, when no groundtruth masks are provided for an image. -- 255236648 by Zhichao Lu: Refactor model_builder in faster_rcnn.py to a util_map, so that it's possible to be overwritten. -- 255093285 by Zhichao Lu: Updating capability to subsample data during evaluation -- 255081222 by rathodv: Convert groundtruth masks to be of type float32 before its used in the loss function. When using mixed precision training, masks are represented using bfloat16 tensors in the input pipeline for performance reasons. We need to convert them to float32 before using it in the loss function. -- 254788436 by Zhichao Lu: Add forward_compatible to non_max_suppression_with_scores to make it is compatible with older tensorflow version. -- 254442362 by Zhichao Lu: Add num_layer field to ssd feature extractor proto. -- 253911582 by jonathanhuang: Plumbs Soft-NMS options (using the new tf.image.non_max_suppression_with_scores op) into the TF Object Detection API. It adds a `soft_nms_sigma` field to the postprocessing proto file and plumbs this through to both the multiclass and class_agnostic versions of NMS. Note that there is no effect on behavior of NMS when soft_nms_sigma=0 (which it is set to by default). See also "Soft-NMS -- Improving Object Detection With One Line of Code" by Bodla et al (https://arxiv.org/abs/1704.04503) -- 253703949 by Zhichao Lu: Internal test fixes. -- 253151266 by Zhichao Lu: Fix the op type check for FusedBatchNorm, given that we introduced FusedBatchNormV3 in a previous change. -- 252718956 by Zhichao Lu: Customize activation function to enable relu6 instead of relu for saliency prediction model seastarization -- 252158593 by Zhichao Lu: Make object_detection/core Python3-compatible. -- 252150717 by Zhichao Lu: Make object_detection/core Python3-compatible. -- 251967048 by Zhichao Lu: Make GraphRewriter proto extensible. -- 251950039 by Zhichao Lu: Remove experimental_export_device_assignment from TPUEstimator.export_savedmodel(), so as to remove rewrite_for_inference(). As a replacement, export_savedmodel() V2 API supports device_assignment where user call tpu.rewrite in model_fn and pass in device_assigment there. -- 251890697 by rathodv: Updated docstring to include new output nodes. -- 251662894 by Zhichao Lu: Add autoaugment augmentation option to objection detection api codebase. This is an available option in preprocessor.py. The intended usage of autoaugment is to be done along with random flipping and cropping for best results. -- 251532908 by Zhichao Lu: Add TrainingDataType enum to track whether class-specific or agnostic data was used to fit the calibration function. This is useful, since classes with few observations may require a calibration function fit on all classes. -- 251511339 by Zhichao Lu: Add multiclass isotonic regression to the calibration builder. -- 251317769 by pengchong: Internal Change. -- 250729989 by Zhichao Lu: Fixing bug in gt statistics count in case of mask and box annotations. -- 250729627 by Zhichao Lu: Label expansion for segmentation. -- 250724905 by Zhichao Lu: Fix use_depthwise in fpn and test it with fpnlite on ssd + mobilenet v2. -- 250670379 by Zhichao Lu: Internal change 250630364 by lzc: Fix detection_model_zoo footnotes -- 250560654 by Zhichao Lu: Fix static shape issue in matmul_crop_and_resize. -- 250534857 by Zhichao Lu: Edit class agnostic calibration function docstring to more accurately describe the function's outputs. -- 250533277 by Zhichao Lu: Edit the multiclass messages to use class ids instead of labels. -- PiperOrigin-RevId: 257914648
-
- 31 May, 2019 1 commit
-
-
pkulzc authored
250447559 by Zhichao Lu: Update expected files format for Instance Segmentation challenge: - add fields ImageWidth, ImageHeight and store the values per prediction - as mask, store only encoded image and assume its size is ImageWidth x ImageHeight -- 250402780 by rathodv: Fix failing Mask R-CNN TPU convergence test. Cast second stage prediction tensors from bfloat16 to float32 to prevent errors in third target assignment (Mask Prediction) - Concat with different types bfloat16 and bfloat32 isn't allowed. -- 250300240 by Zhichao Lu: Addion Open Images Challenge 2019 object detection and instance segmentation support into Estimator framework. -- 249944839 by rathodv: Modify exporter.py to add multiclass score nodes in exported inference graphs. -- 249935201 by rathodv: Modify postprocess methods to preserve multiclass scores after non max suppression. -- 249878079 by Zhichao Lu: This CL slightly refactors some Object Detection helper functions for data creation, evaluation, and groundtruth providing. This will allow the eager+function custom loops to share code with the existing estimator training loops. Concretely we make the following changes: 1. In input creation we separate dataset-creation into top-level helpers, and allow it to optionally accept a pre-constructed model directly instead of always creating a model from the config just for feature preprocessing. 2. In coco evaluation we split the update_op creation into its own function, which the custom loops will call directly. 3. In model_lib we move groundtruth providing/ datastructure munging into a helper function 4. For now we put an escape hatch in `_summarize_target_assignment` when executing in tf v2.0 behavior because the summary apis used only work w/ tf 1.x -- 249673507 by rathodv: Use explicit casts instead of tf.to_float and tf.to_int32 to avoid warnings. -- 249656006 by Zhichao Lu: Add named "raw_keypoint_locations" node that corresponds with the "raw_box_locations" node. -- 249651674 by rathodv: Keep proposal boxes in float format. MatMulCropAndResize can handle the type even when feature themselves are bfloat16s. -- 249568633 by rathodv: Support q > 1 in class agnostic NMS. Break post_processing_test.py into 3 separate files to avoid linter errors. -- 249535530 by rathodv: Update some deprecated arguments to tf ops. -- 249368223 by rathodv: Modify MatMulCropAndResize to use MultiLevelRoIAlign method and move the tests to spatial_transform_ops.py module. This cl establishes that CropAndResize and RoIAlign are equivalent and only differ in the sampling point grid within the boxes. CropAndResize uses a uniform size x size point grid such that the corner points exactly overlap box corners, while RoiAlign divides boxes into size x size cells and uses their centers as sampling points. In this cl, we switch MatMulCropAndResize to use the MultiLevelRoIAlign implementation with `align_corner` option as MultiLevelRoIAlign implementation is more memory efficient on TPU when compared to the original MatMulCropAndResize. -- 249337338 by chowdhery: Add class-agnostic non-max-suppression in post_processing -- 249139196 by Zhichao Lu: Fix positional argument bug in export_tflite_ssd_graph -- 249120219 by Zhichao Lu: Add evaluator for computing precision limited to a given recall range. -- 249030593 by Zhichao Lu: Evaluation util to run segmentation and detection challenge evaluation. -- 248554358 by Zhichao Lu: This change contains the auxiliary changes required for TF 2.0 style training with eager+functions+dist strat loops, but not the loops themselves. It includes: - Updates to shape usage to support both tensorshape v1 and tensorshape v2 - A fix to FreezableBatchNorm to not override the `training` arg in call when `None` was passed to the constructor (Not an issue in the estimator loops but it was in the custom loops) - Puts some constants in init_scope so they work in eager + functions - Makes learning rate schedules return a callable in eager mode (required so they update when the global_step changes) - Makes DetectionModel a tf.module so it tracks variables (e.g. ones nested in layers) - Removes some references to `op.name` for some losses and replaces it w/ explicit names - A small part of the change to allow the coco evaluation metrics to work in eager mode -- 248271226 by rathodv: Add MultiLevel RoIAlign op. -- 248229103 by rathodv: Add functions to 1. pad features maps 2. ravel 5-D indices -- 248206769 by rathodv: Add utilities needed to introduce RoI Align op. -- 248177733 by pengchong: Internal changes -- 247742582 by Zhichao Lu: Open Images Challenge 2019 instance segmentation metric: part 2 -- 247525401 by Zhichao Lu: Update comments on max_class_per_detection. -- 247520753 by rathodv: Add multilevel crop and resize operation that builds on top of matmul_crop_and_resize. -- 247391600 by Zhichao Lu: Open Images Challenge 2019 instance segmentation metric -- 247325813 by chowdhery: Quantized MobileNet v2 SSD FPNLite config with depth multiplier 0.75 -- PiperOrigin-RevId: 250447559
-
- 22 May, 2019 1 commit
-
-
Zhuoran Liu authored
247226201 by ronnyvotel: Updating the visualization tools to accept unique_ids for color coding. -- 247067830 by Zhichao Lu: Add box_encodings_clip_range options for the convolutional box predictor (for TPU compatibility). -- 246888475 by Zhichao Lu: Remove unused _update_eval_steps function. -- 246163259 by lzc: Add a gather op that can handle ignore indices (which are "-1"s in this case). -- 246084944 by Zhichao Lu: Keras based implementation for SSD + MobilenetV2 + FPN. -- 245544227 by rathodv: Add batch_get_targets method to target assigner module to gather any groundtruth tensors based on the results of target assigner. -- 245540854 by rathodv: Update target assigner to return match tensor instead of a match object. -- 245434441 by Zhichao Lu: Add README for tpu_exporters package. -- 245381834 by lzc: Internal change. -- 245298983 by Zh...
-
- 22 Apr, 2019 1 commit
-
-
Georg Wölflein authored
The evaluation crashes in python3 if iteritems() is used instead of items()
-
- 02 Nov, 2018 1 commit
-
-
pkulzc authored
* Internal change. PiperOrigin-RevId: 213914693 * Add original_image_spatial_shape tensor in input dictionary to store shape of the original input image PiperOrigin-RevId: 214018767 * Remove "groundtruth_confidences" from decoders use "groundtruth_weights" to indicate label confidence. This also solves a bug that only surfaced now - random crop routines in core/preprocessor.py did not correctly handle "groundtruth_weight" tensors returned by the decoders. PiperOrigin-RevId: 214091843 * Update CocoMaskEvaluator to allow for a batch of image info, rather than a single image. PiperOrigin-RevId: 214295305 * Adding the option to be able to summarize gradients. PiperOrigin-RevId: 214310875 * Adds FasterRCNN inference on CPU 1. Adds a flag use_static_shapes_for_eval to restrict to the ops that guarantees static shape. 2. No filtering of overlapping anchors while clipping the anchors when use_static_shapes_for_eval is set to True. 3. A...
-
- 21 Sep, 2018 1 commit
-
-
pkulzc authored
Release iNaturalist Species-trained models, refactor of evaluation, box predictor for object detection. (#5289) * Merged commit includes the following changes: 212389173 by Zhichao Lu: 1. Replace tf.boolean_mask with tf.where -- 212282646 by Zhichao Lu: 1. Fix a typo in model_builder.py and add a test to cover it. -- 212142989 by Zhichao Lu: Only resize masks in meta architecture if it has not already been resized in the input pipeline. -- 212136935 by Zhichao Lu: Choose matmul or native crop_and_resize in the model builder instead of faster r-cnn meta architecture. -- 211907984 by Zhichao Lu: Make eval input reader repeated field and update config util to handle this field. -- 211858098 by Zhichao Lu: Change the implementation of merge_boxes_with_multiple_labels. -- 211843915 by Zhichao Lu: Add Mobilenet v2 + FPN support. -- 211655076 by Zhichao Lu: Bug fix for generic keys in config overrides In generic configuration overrides, we had a duplicate entry for train_input_config and we were missing the eval_input_config and eval_config. This change also introduces testing for all config overrides. -- 211157501 by Zhichao Lu: Make the locally-modified conv defs a copy. So that it doesn't modify MobileNet conv defs globally for other code that transitively imports this package. -- 211112813 by Zhichao Lu: Refactoring visualization tools for Estimator's eval_metric_ops. This will make it easier for future models to take advantage of a single interface and mechanics. -- 211109571 by Zhichao Lu: A test decorator. -- 210747685 by Zhichao Lu: For FPN, when use_depthwise is set to true, use slightly modified mobilenet v1 config. -- 210723882 by Zhichao Lu: Integrating the losses mask into the meta architectures. When providing groundtruth, one can optionally specify annotation information (i.e. which images are labeled vs. unlabeled). For any image that is unlabeled, there is no loss accumulation. -- 210673675 by Zhichao Lu: Internal change. -- 210546590 by Zhichao Lu: Internal change. -- 210529752 by Zhichao Lu: Support batched inputs with ops.matmul_crop_and_resize. With this change the new inputs are images of shape [batch, heigh, width, depth] and boxes of shape [batch, num_boxes, 4]. The output tensor is of the shape [batch, num_boxes, crop_height, crop_width, depth]. -- 210485912 by Zhichao Lu: Fix TensorFlow version check in object_detection_tutorial.ipynb -- 210484076 by Zhichao Lu: Reduce TPU memory required for single image matmul_crop_and_resize. Using tf.einsum eliminates intermediate tensors, tiling and expansion. for an image of size [40, 40, 1024] and boxes of shape [300, 4] HBM memory usage goes down from 3.52G to 1.67G. -- 210468361 by Zhichao Lu: Remove PositiveAnchorLossCDF/NegativeAnchorLossCDF to resolve "Main thread is not in main loop error" issue in local training. -- 210100253 by Zhichao Lu: Pooling pyramid feature maps: add option to replace max pool with convolution layers. -- 209995842 by Zhichao Lu: Fix a bug which prevents variable sharing in Faster RCNN. -- 209965526 by Zhichao Lu: Add support for enabling export_to_tpu through the estimator. -- 209946440 by Zhichao Lu: Replace deprecated tf.train.Supervisor with tf.train.MonitoredSession. MonitoredSession also takes away the hassle of starting queue runners. -- 209888003 by Zhichao Lu: Implement function to handle data where source_id is not set. If the field source_id is found to be the empty string for any image during runtime, it will be replaced with a random string. This avoids hash-collisions on dataset where many examples do not have source_id set. Those hash-collisions have unintended site effects and may lead to bugs in the detection pipeline. -- 209842134 by Zhichao Lu: Converting loss mask into multiplier, rather than using it as a boolean mask (which changes tensor shape). This is necessary, since other utilities (e.g. hard example miner) require a loss matrix with the same dimensions as the original prediction tensor. -- 209768066 by Zhichao Lu: Adding ability to remove loss computation from specific images in a batch, via an optional boolean mask. -- 209722556 by Zhichao Lu: Remove dead code. (_USE_C_API was flipped to True by default in TensorFlow 1.8) -- 209701861 by Zhichao Lu: This CL cleans-up some tf.Example creation snippets, by reusing the convenient tf.train.Feature building functions in dataset_util. -- 209697893 by Zhichao Lu: Do not overwrite num_epoch for eval input. This leads to errors in some cases. -- 209694652 by Zhichao Lu: Sample boxes by jittering around the currently given boxes. -- 209550300 by Zhichao Lu: `create_category_index_from_labelmap()` function now accepts `use_display_name` parameter. Also added create_categories_from_labelmap function for convenience -- 209490273 by Zhichao Lu: Check result_dict type before accessing image_id via key. -- 209442529 by Zhichao Lu: Introducing the capability to sample examples for evaluation. This makes it easy to specify one full epoch of evaluation, or a subset (e.g. sample 1 of every N examples). -- 208941150 by Zhichao Lu: Adding the capability of exporting the results in json format. -- 208888798 by Zhichao Lu: Fixes wrong dictionary key for num_det_boxes_per_image. -- 208873549 by Zhichao Lu: Reduce the number of HLO ops created by matmul_crop_and_resize. Do not unroll along the channels dimension. Instead, transpose the input image dimensions, apply tf.matmul and transpose back. The number of HLO instructions for 1024 channels reduce from 12368 to 110. -- 208844315 by Zhichao Lu: Add an option to use tf.non_maximal_supression_padded in SSD post-process -- 208731380 by Zhichao Lu: Add field in box_predictor config to enable mask prediction and update builders accordingly. -- 208699405 by Zhichao Lu: This CL creates a keras-based multi-resolution feature map extractor. -- 208557208 by Zhichao Lu: Add TPU tests for Faster R-CNN Meta arch. * Tests that two_stage_predict and total_loss tests run successfully on TPU. * Small mods to multiclass_non_max_suppression to preserve static shapes. -- 208499278 by Zhichao Lu: This CL makes sure the Keras convolutional box predictor & head layers apply activation layers *after* normalization (as opposed to before). -- 208391694 by Zhichao Lu: Updating visualization tool to produce multiple evaluation images. -- 208275961 by Zhichao Lu: This CL adds a Keras version of the Convolutional Box Predictor, as well as more general infrastructure for making Keras Prediction heads & Keras box predictors. -- 208275585 by Zhichao Lu: This CL enables the Keras layer hyperparameter object to build a dedicated activation layer, and to disable activation by default in the op layer construction kwargs. This is necessary because in most cases the normalization layer must be applied before the activation layer. So, in Keras models we must set the convolution activation in a dedicated layer after normalization is applied, rather than setting it in the convolution layer construction args. -- 208263792 by Zhichao Lu: Add a new SSD mask meta arch that can predict masks for SSD models. Changes including: - overwrite loss function to add mask loss computation. - update ssd_meta_arch to handle masks if predicted in predict and postprocessing. -- 208000218 by Zhichao Lu: Make FasterRCNN choose static shape operations only in training mode. -- 207997797 by Zhichao Lu: Add static boolean_mask op to box_list_ops.py and use that in faster_rcnn_meta_arch.py to support use_static_shapes option. -- 207993460 by Zhichao Lu: Include FGVC detection models in model zoo. -- 207971213 by Zhichao Lu: remove the restriction to run tf.nn.top_k op on CPU -- 207961187 by Zhichao Lu: Build the first stage NMS function in the model builder and pass it to FasterRCNN meta arch. -- 207960608 by Zhichao Lu: Internal Change. -- 207927015 by Zhichao Lu: Have an option to use the TPU compatible NMS op cl/206673787, in the batch_multiclass_non_max_suppression function. On setting pad_to_max_output_size to true, the output nmsed boxes are padded to be of length max_size_per_class. This can be used in first stage Region Proposal Network in FasterRCNN model by setting the first_stage_nms_pad_to_max_proposals field to true in config proto. -- 207809668 by Zhichao Lu: Add option to use depthwise separable conv instead of conv2d in FPN and WeightSharedBoxPredictor. More specifically, there are two related configs: - SsdFeatureExtractor.use_depthwise - WeightSharedConvolutionalBoxPredictor.use_depthwise -- 207808651 by Zhichao Lu: Fix the static balanced positive negative sampler's TPU tests -- 207798658 by Zhichao Lu: Fixes a post-refactoring bug where the pre-prediction convolution layers in the convolutional box predictor are ignored. -- 207796470 by Zhichao Lu: Make slim endpoints visible in FasterRCNNMetaArch. -- 207787053 by Zhichao Lu: Refactor ssd_meta_arch so that the target assigner instance is passed into the SSDMetaArch constructor rather than constructed inside. -- PiperOrigin-RevId: 212389173 * Fix detection model zoo typo. * Modify tf example decoder to handle label maps with either `display_name` or `name` fields seamlessly. Currently, tf example decoder uses only `name` field to look up ids for class text field present in the data. This change uses both `display_name` and `name` fields in the label map to fetch ids for class text. PiperOrigin-RevId: 212672223 * Modify create_coco_tf_record tool to write out class text instead of class labels. PiperOrigin-RevId: 212679112 * Fix detection model zoo typo. PiperOrigin-RevId: 212715692 * Adding the following two optional flags to WeightSharedConvolutionalBoxHead: 1) In the box head, apply clipping to box encodings in the box head. 2) In the class head, apply sigmoid to class predictions at inference time. PiperOrigin-RevId: 212723242 * Support class confidences in merge boxes with multiple labels. PiperOrigin-RevId: 212884998 * Creates multiple eval specs for object detection. PiperOrigin-RevId: 212894556 * Set batch_norm on last layer in Mask Head to None. PiperOrigin-RevId: 213030087 * Enable bfloat16 training for object detection models. PiperOrigin-RevId: 213053547 * Skip padding op when unnecessary. PiperOrigin-RevId: 213065869 * Modify `Matchers` to use groundtruth weights before performing matching. Groundtruth weights tensor is used to indicate padding in groundtruth box tensor. It is handled in `TargetAssigner` by creating appropriate classification and regression target weights based on the groundtruth box each anchor matches to. However, options such as `force_match_all_rows` in `ArgmaxMatcher` force certain anchors to match to groundtruth boxes that are just paddings thereby reducing the number of anchors that could otherwise match to real groundtruth boxes. For single stage models like SSD the effect of this is negligible as there are two orders of magnitude more anchors than the number of padded groundtruth boxes. But for Faster R-CNN and Mask R-CNN where there are only 300 anchors in the second stage, a significant number of these match to groundtruth paddings reducing the number of anchors regressing to real groundtruth boxes degrading the performance severely. Therefore, this change introduces an additional boolean argument `valid_rows` to `Matcher.match` methods and the implementations now ignore such padded groudtruth boxes during matching. PiperOrigin-RevId: 213345395 * Add release note for iNaturalist Species trained models. PiperOrigin-RevId: 213347179 * Fix the bug of uninitialized gt_is_crowd_list variable. PiperOrigin-RevId: 213364858 * ...text exposed to open source public git repo... PiperOrigin-RevId: 213554260
-
- 08 Aug, 2018 1 commit
-
-
pkulzc authored
* Merged commit includes the following changes: 207771702 by Zhichao Lu: Refactoring evaluation utilities so that it is easier to introduce new DetectionEvaluators with eval_metric_ops. -- 207758641 by Zhichao Lu: Require tensorflow version 1.9+ for running object detection API. -- 207641470 by Zhichao Lu: Clip `num_groundtruth_boxes` in pad_input_data_to_static_shapes() to `max_num_boxes`. This prevents a scenario where tensors are sliced to an invalid range in model_lib.unstack_batch(). -- 207621728 by Zhichao Lu: This CL adds a FreezableBatchNorm that inherits from the Keras BatchNormalization layer, but supports freezing the `training` parameter at construction time instead of having to do it in the `call` method. It also adds a method to the `KerasLayerHyperparams` class that will build an appropriate FreezableBatchNorm layer according to the hyperparameter configuration. If batch_norm is disabled, this method returns and Identity layer. These will be used to simplify the conversion to Keras APIs. -- 207610524 by Zhichao Lu: Update anchor generators and box predictors for python3 compatibility. -- 207585122 by Zhichao Lu: Refactoring convolutional box predictor into separate prediction heads. -- 207549305 by Zhichao Lu: Pass all 1s for batch weights if nothing is specified in GT. -- 207336575 by Zhichao Lu: Move the new argument 'target_assigner_instance' to the end of the list of arguments to the ssd_meta_arch constructor for backwards compatibility. -- 207327862 by Zhichao Lu: Enable support for float output in quantized custom op for postprocessing in SSD Mobilenet model. -- 207323154 by Zhichao Lu: Bug fix: change dict.iteritems() to dict.items() -- 207301109 by Zhichao Lu: Integrating expected_classification_loss_under_sampling op as an option in the ssd_meta_arch -- 207286221 by Zhichao Lu: Adding an option to weight regression loss with foreground scores from the ground truth labels. -- 207231739 by Zhichao Lu: Explicitly mentioning the argument names when calling the batch target assigner. -- 207206356 by Zhichao Lu: Add include_trainable_variables field to train config to better handle trainable variables. -- 207135930 by Zhichao Lu: Internal change. -- 206862541 by Zhichao Lu: Do not unpad the outputs from batch_non_max_suppression before sampling. Since BalancedPositiveNegativeSampler takes an indicator for valid positions to sample from we can pass the output from NMS directly into Sampler. -- PiperOrigin-RevId: 207771702 * Remove unused doc.
-
- 11 May, 2018 1 commit
-
-
Zhichao Lu authored
196161788 by Zhichao Lu: Add eval_on_train_steps parameter. Since the number of samples in train dataset is usually different to the number of samples in the eval dataset. -- 196151742 by Zhichao Lu: Add an optional random sampling process for SSD meta arch and update mean stddev coder to use default std dev when corresponding tensor is not added to boxlist field. -- 196148940 by Zhichao Lu: Release ssdlite mobilenet v2 coco trained model. -- 196058528 by Zhichao Lu: Apply FPN feature map generation before we add additional layers on top of resnet feature extractor. -- 195818367 by Zhichao Lu: Add support for exporting detection keypoints. -- 195745420 by Zhichao Lu: Introduce include_metrics_per_category option to Object Detection eval_config. -- 195734733 by Zhichao Lu: Rename SSDLite config to be more explicit. -- 195717383 by Zhichao Lu: Add quantized training to object_detection. -- 195683542 by Zhichao Lu: Fix documentation for the interaction of fine_tune_checkpoint_type and load_all_detection_checkpoint_vars interaction. -- 195668233 by Zhichao Lu: Using batch size from params dictionary if present. -- 195570173 by Zhichao Lu: A few fixes to get new estimator API eval to match legacy detection eval binary by (1) plumbing `is_crowd` annotations through to COCO evaluator, (2) setting the `sloppy` flag in tf.contrib.data.parallel_interleave based on whether shuffling is enabled, and (3) saving the original image instead of the resized original image, which allows for small/medium/large mAP metrics to be properly computed. -- 195316756 by Zhichao Lu: Internal change -- PiperOrigin-RevId: 196161788
-
- 01 May, 2018 1 commit
-
-
pkulzc authored
* Adding option for one_box_for_all_classes to the box_predictor PiperOrigin-RevId: 192813444 * Extend to accept different ratios of conv channels. PiperOrigin-RevId: 192837477 * Remove inaccurate caveat from proto file. PiperOrigin-RevId: 192850747 * Add option to set dropout for classification net in weight shared box predictor. PiperOrigin-RevId: 192922089 * fix flakiness in testSSDRandomCropWithMultiClassScores due to randomness. PiperOrigin-RevId: 193067658 * Post-process now works again in train mode. PiperOrigin-RevId: 193087707 * Adding support for reading in logits as groundtruth labels and applying an optional temperature (scaling) before softmax in support of distillation. PiperOrigin-RevId: 193119411 * Add a util function to visualize value histogram as a tf.summary.image. PiperOrigin-RevId: 193137342 * Do not add batch norm parameters to final conv2d ops that predict boxes encodings and class scores in weight shared conv box predictor. This allows us to set proper bias and force initial predictions to be background when using focal loss. PiperOrigin-RevId: 193204364 * Make sure the final layers are also resized proportional to conv_depth_ratio. PiperOrigin-RevId: 193228972 * Remove deprecated batch_norm_trainable field from ssd mobilenet v2 config PiperOrigin-RevId: 193244778 * Updating coco evaluation metrics to allow for a batch of image info, rather than a single image. PiperOrigin-RevId: 193382651 * Update protobuf requirements to 3+ in installation docs. PiperOrigin-RevId: 193409179 * Add support for training keypoints. PiperOrigin-RevId: 193576336 * Fix data augmentation functions. PiperOrigin-RevId: 193737238 * Read the default batch size from config file. PiperOrigin-RevId: 193959861 * Fixing a bug in the coco evaluator. PiperOrigin-RevId: 193974479 * num_gt_boxes_per_image and num_det_boxes_per_image value incorrect. Should be not the expand dim. PiperOrigin-RevId: 194122420 * Add option to evaluate any checkpoint (without requiring write access to that directory and overwriting any existing logs there). PiperOrigin-RevId: 194292198 * PiperOrigin-RevId: 190346687 * - Expose slim arg_scope function to compute keys to enable tessting. - Add is_training=None option to mobinenet arg_scopes. This allows the users to set is_training from an outer scope. PiperOrigin-RevId: 190997959 * Add an option to not set slim arg_scope for batch_norm is_training parameter. This enables users to set the is_training parameter from an outer scope. PiperOrigin-RevId: 191611934 * PiperOrigin-RevId: 191955231 * PiperOrigin-RevId: 193254125 * PiperOrigin-RevId: 193371562 * PiperOrigin-RevId: 194085628
-
- 22 Mar, 2018 1 commit
-
-
pkulzc authored
* Force cast of num_classes to integer PiperOrigin-RevId: 188335318 * Updating config util to allow overwriting of cosine decay learning rates. PiperOrigin-RevId: 188338852 * Make box_list_ops.py and box_list_ops_test.py work with C API enabled. The C API has improved shape inference over the original Python code. This causes some previously-working conds to fail. Switching to smart_cond fixes this. Another effect of the improved shape inference is that one of the failures tested gets caught earlier, so I modified the test to reflect this. PiperOrigin-RevId: 188409792 * Fix parallel event file writing issue. Without this change, the event files might get corrupted when multiple evaluations are run in parallel. PiperOrigin-RevId: 188502560 * Deprecating the boolean flag of from_detection_checkpoint. Replace with a string field fine_tune_checkpoint_type to train_config to provide extensibility. The fine_tune_checkpoint_type can currently take value of `detection`, `classification`, or others when the restore_map is overwritten. PiperOrigin-RevId: 188518685 * Automated g4 rollback of changelist 188502560 PiperOrigin-RevId: 188519969 * Introducing eval metrics specs for Coco Mask metrics. This allows metrics to be computed in tensorflow using the tf.learn Estimator. PiperOrigin-RevId: 188528485 * Minor fix to make object_detection/metrics/coco_evaluation.py python3 compatible. PiperOrigin-RevId: 188550683 * Updating eval_util to handle eval_metric_ops from multiple `DetectionEvaluator`s. PiperOrigin-RevId: 188560474 * Allow tensor input for new_height and new_width for resize_image. PiperOrigin-RevId: 188561908 * Fix typo in fine_tune_checkpoint_type name in trainer. PiperOrigin-RevId: 188799033 * Adding mobilenet feature extractor to object detection. PiperOrigin-RevId: 188916897 * Allow label maps to optionally contain an explicit background class with id zero. PiperOrigin-RevId: 188951089 * Fix boundary conditions in random_pad_to_aspect_ratio to ensure that min_scale is always less than max_scale. PiperOrigin-RevId: 189026868 * Fallback on from_detection_checkpoint option if fine_tune_checkpoint_type isn't set. PiperOrigin-RevId: 189052833 * Add proper names for learning rate schedules so we don't see cryptic names on tensorboard. PiperOrigin-RevId: 189069837 * Enforcing that all datasets are batched (and then unbatched in the model) with batch_size >= 1. PiperOrigin-RevId: 189117178 * Adding regularization to total loss returned from DetectionModel.loss(). PiperOrigin-RevId: 189189123 * Standardize the names of loss scalars (for SSD, Faster R-CNN and R-FCN) in both training and eval so they can be compared on tensorboard. Log localization and classification losses in evaluation. PiperOrigin-RevId: 189189940 * Remove negative test from box list ops test. PiperOrigin-RevId: 189229327 * Add an option to warmup learning rate in manual stepping schedule. PiperOrigin-RevId: 189361039 * Replace tf.contrib.slim.tfexample_decoder.LookupTensor with object_detection.data_decoders.tf_example_decoder.LookupTensor. PiperOrigin-RevId: 189388556 * Force regularization summary variables under specific family names. PiperOrigin-RevId: 189393190 * Automated g4 rollback of changelist 188619139 PiperOrigin-RevId: 189396001 * Remove step 0 schedule since we do a hard check for it after cl/189361039 PiperOrigin-RevId: 189396697 * PiperOrigin-RevId: 189040463 * PiperOrigin-RevId: 189059229 * PiperOrigin-RevId: 189214402 * Force regularization summary variables under specific family names. PiperOrigin-RevId: 189393190 * Automated g4 rollback of changelist 188619139 PiperOrigin-RevId: 189396001 * Make slim python3 compatible. * Monir fixes. * Add TargetAssignment summaries in a separate family. PiperOrigin-RevId: 189407487 * 1. Setting `family` keyword arg prepends the summary names twice with the same name. Directly adding family suffix to the name gets rid of this problem. 2. Make sure the eval losses have the same name. PiperOrigin-RevId: 189434618 * Minor fixes to make object detection tf 1.4 compatible. PiperOrigin-RevId: 189437519 * Call the base of mobilenet_v1 feature extractor under the right arg scope and set batchnorm is_training based on the value passed in the constructor. PiperOrigin-RevId: 189460890 * Automated g4 rollback of changelist 188409792 PiperOrigin-RevId: 189463882 * Update object detection syncing. PiperOrigin-RevId: 189601955 * Add an option to warmup learning rate, hold it constant for a certain number of steps and cosine decay it. PiperOrigin-RevId: 189606169 * Let the proposal feature extractor function in faster_rcnn meta architectures return the activations (end_points). PiperOrigin-RevId: 189619301 * Fixed bug which caused masks to be mostly zeros (caused by detection_boxes being in absolute coordinates if scale_to_absolute=True. PiperOrigin-RevId: 189641294 * Open sourcing Mobilenetv2 + SSDLite. PiperOrigin-RevId: 189654520 * Remove unused files.
-
- 04 Mar, 2018 1 commit
-
-
Zhichao Lu authored
PiperOrigin-RevId: 187527188
-
- 10 Feb, 2018 1 commit
-
-
Zhichao Lu authored
185215255 by Zhichao Lu: Stop populating image/object/class/text field when generating COCO tf record. -- 185213306 by Zhichao Lu: Use the params batch size and not the one from train_config in input_fn -- 185209081 by Zhichao Lu: Handle the case when there are no ground-truth masks for an image. -- 185195531 by Zhichao Lu: Remove unstack and stack operations on features from third_party/object_detection/model.py. -- 185195017 by Zhichao Lu: Matrix multiplication based gather op implementation. -- 185187744 by Zhichao Lu: Fix eval_util minor issue. -- 185098733 by Zhichao Lu: Internal change 185076656 by Zhichao Lu: Increment the amount of boxes for coco17. -- 185074199 by Zhichao Lu: Add config for SSD Resnet50 v1 with FPN. -- 185060199 by Zhichao Lu: Fix a bug in clear_detections. This method set detection_keys to an empty dictionary instead of an empty set. I've refactored so that this method and the constructor use the same code path. -- 185031359 by Zhichao Lu: Eval TPU trained models continuously. -- 185016591 by Zhichao Lu: Use TPUEstimatorSpec for TPU -- 185013651 by Zhichao Lu: Add PreprocessorCache to record and duplicate augmentations. -- 184921763 by Zhichao Lu: Minor fixes for object detection. -- 184920610 by Zhichao Lu: Adds a model builder test for "embedded_ssd_mobilenet_v1" feature extractor. -- 184919284 by Zhichao Lu: Added unit tests for TPU, with optional training / eval. -- 184915910 by Zhichao Lu: Update third_party g3 doc with Mask RCNN detection models. -- 184914085 by Zhichao Lu: Slight change to WeightSharedConvolutionalBoxPredictor implementation to make things match more closely with RetinaNet. Specifically we now construct the box encoding and class predictor towers separately rather than having them share weights until penultimate layer. -- 184913786 by Zhichao Lu: Plumbs SSD Resnet V1 with FPN models into model builder. -- 184910030 by Zhichao Lu: Add coco metrics to evaluator. -- 184897758 by Zhichao Lu: Merge changes from github. -- 184888736 by Zhichao Lu: Ensure groundtruth_weights are always 1-D. -- 184887256 by Zhichao Lu: Introduce an option to add summaries in the model so it can be turned off when necessary. -- 184865559 by Zhichao Lu: Updating inputs so that a dictionary of tensors is returned from input_fn. Moving unbatch/unpad to model.py. Also removing source_id key from features dictionary, and replacing with an integer hash. -- 184859205 by Zhichao Lu: This CL is trying to hide those differences by making the default settings work with the public code. -- 184769779 by Zhichao Lu: Pass groundtruth weights into ssd meta architecture all the way to target assigner. This will allow training ssd models with padded groundtruth tensors. -- 184767117 by Zhichao Lu: * Add `params` arg to make all input fns work with TPUEstimator * Add --master * Output eval results -- 184766244 by Zhichao Lu: Update create_coco_tf_record to include category indices -- 184752937 by Zhichao Lu: Create a third_party version of TPU compatible mobilenet_v2_focal_loss coco config. -- 184750174 by Zhichao Lu: A few small fixes for multiscale anchor generator and a test. -- 184746581 by Zhichao Lu: Update jupyter notebook to show mask if provided by model. -- 184728646 by Zhichao Lu: Adding a few more tests to make sure decoding with/without label maps performs as expected. -- 184624154 by Zhichao Lu: Add an object detection binary for TPU. -- 184622118 by Zhichao Lu: Batch, transform, and unbatch in the tflearn interface. -- 184595064 by Zhichao Lu: Add support for training grayscale models. -- 184532026 by Zhichao Lu: Change dataset_builder.build to perform optional batching using tf.data.Dataset API -- 184330239 by Zhichao Lu: Add augment_input_data and transform_input_data helper functions to third_party/tensorflow_models/object_detection/inputs.py -- 184328681 by Zhichao Lu: Use an internal rgb to gray method that can be quantized. -- 184327909 by Zhichao Lu: Helper function to return padding shapes to use with Dataset.padded_batch. -- 184326291 by Zhichao Lu: Added decode_func for specialized decoding. -- 184314676 by Zhichao Lu: Add unstack_batch method to inputs.py. This will enable us to convert batched tensors to lists of tensors. This is compatible with OD API that consumes groundtruth batch as a list of tensors. -- 184281269 by Zhichao Lu: Internal test target changes. -- 184192851 by Zhichao Lu: Adding `Estimator` interface for object detection. -- 184187885 by Zhichao Lu: Add config_util functions to help with input pipeline. 1. function to return expected shapes from the resizer config 2. function to extract image_resizer_config from model_config. -- 184139892 by Zhichao Lu: Adding support for depthwise SSD (ssd-lite) and depthwise box predictions. -- 184089891 by Zhichao Lu: Fix third_party faster rcnn resnet101 coco config. -- 184083378 by Zhichao Lu: In the case when there is no object/weights field in tf.Example proto, return a default weight of 1.0 for all boxes. -- PiperOrigin-RevId: 185215255
-
- 02 Feb, 2018 1 commit
-
-
Zhichao Lu authored
-
- 01 Feb, 2018 1 commit
-
-
Zhichao Lu authored
184048729 by Zhichao Lu: Modify target_assigner so that it creates regression targets taking keypoints into account. -- 184027183 by Zhichao Lu: Resnet V1 FPN based feature extractors for SSD meta architecture in Object Detection V2 API. -- 184004730 by Zhichao Lu: Expose a lever to override the configured mask_type. -- 183933113 by Zhichao Lu: Weight shared convolutional box predictor as described in https://arxiv.org/abs/1708.02002 -- 183929669 by Zhichao Lu: Expanding box list operations for future data augmentations. -- 183916792 by Zhichao Lu: Fix unrecognized assertion function in tests. -- 183906851 by Zhichao Lu: - Change ssd meta architecture to use regression weights to compute loss normalizer. -- 183871003 by Zhichao Lu: Fix config_util_test wrong dependency. -- 183782120 by Zhichao Lu: Add __init__ file to third_party directories. -- 183779109 by Zhichao Lu: Setup regular version sync. -- 183768772 by Zhichao Lu: Make test compatible with numpy 1.12 and higher -- 183767893 by Zhichao Lu: Make test compatible with numpy 1.12 and higher -- 183719318 by Zhichao Lu: Use the new test interface in ssd feature extractor. -- 183714671 by Zhichao Lu: Use the new test_case interface for all anchor generators. -- 183708155 by Zhichao Lu: Change variable scopes in ConvolutionalBoxPredictor such that previously trained checkpoints are still compatible after the change in BoxPredictor interface -- 183705798 by Zhichao Lu: Internal change. -- 183636023 by Zhichao Lu: Fixing argument name for np_box_list_ops.concatenate() function. -- 183490404 by Zhichao Lu: Make sure code that relies in SSD older code still works. -- 183426762 by Zhichao Lu: Internal change 183412315 by Zhichao Lu: Internal change 183337814 by Zhichao Lu: Internal change 183303933 by Zhichao Lu: Internal change 183257349 by Zhichao Lu: Internal change 183254447 by Zhichao Lu: Internal change 183251200 by Zhichao Lu: Internal change 183135002 by Zhichao Lu: Internal change 182851500 by Zhichao Lu: Internal change 182839607 by Zhichao Lu: Internal change 182830719 by Zhichao Lu: Internal change 182533923 by Zhichao Lu: Internal change 182391090 by Zhichao Lu: Internal change 182262339 by Zhichao Lu: Internal change 182244645 by Zhichao Lu: Internal change 182241613 by Zhichao Lu: Internal change 182133027 by Zhichao Lu: Internal change 182058807 by Zhichao Lu: Internal change 181812028 by Zhichao Lu: Internal change 181788857 by Zhichao Lu: Internal change 181656761 by Zhichao Lu: Internal change 181541125 by Zhichao Lu: Internal change 181538702 by Zhichao Lu: Internal change 181125385 by Zhichao Lu: Internal change 180957758 by Zhichao Lu: Internal change 180941434 by Zhichao Lu: Internal change 180852569 by Zhichao Lu: Internal change 180846001 by Zhichao Lu: Internal change 180832145 by Zhichao Lu: Internal change 180740495 by Zhichao Lu: Internal change 180729150 by Zhichao Lu: Internal change 180589008 by Zhichao Lu: Internal change 180585408 by Zhichao Lu: Internal change 180581039 by Zhichao Lu: Internal change 180286388 by Zhichao Lu: Internal change 179934081 by Zhichao Lu: Internal change 179841242 by Zhichao Lu: Internal change 179831694 by Zhichao Lu: Internal change 179761005 by Zhichao Lu: Internal change 179610632 by Zhichao Lu: Internal change 179605363 by Zhichao Lu: Internal change 179603774 by Zhichao Lu: Internal change 179598614 by Zhichao Lu: Internal change 179597809 by Zhichao Lu: Internal change 179494630 by Zhichao Lu: Internal change 179367492 by Zhichao Lu: Internal change 179250050 by Zhichao Lu: Internal change 179247385 by Zhichao Lu: Internal change 179207897 by Zhichao Lu: Internal change 179076230 by Zhichao Lu: Internal change 178862066 by Zhichao Lu: Internal change 178854216 by Zhichao Lu: Internal change 178853109 by Zhichao Lu: Internal change 178709753 by Zhichao Lu: Internal change 178640707 by Zhichao Lu: Internal change 178421534 by Zhichao Lu: Internal change 178287174 by Zhichao Lu: Internal change 178257399 by Zhichao Lu: Internal change 177681867 by Zhichao Lu: Internal change 177654820 by Zhichao Lu: Internal change 177654052 by Zhichao Lu: Internal change 177638787 by Zhichao Lu: Internal change 177598305 by Zhichao Lu: Internal change 177538488 by Zhichao Lu: Internal change 177474197 by Zhichao Lu: Internal change 177271928 by Zhichao Lu: Internal change 177250285 by Zhichao Lu: Internal change 177210762 by Zhichao Lu: Internal change 177197135 by Zhichao Lu: Internal change 177037781 by Zhichao Lu: Internal change 176917394 by Zhichao Lu: Internal change 176683171 by Zhichao Lu: Internal change 176450793 by Zhichao Lu: Internal change 176388133 by Zhichao Lu: Internal change 176197721 by Zhichao Lu: Internal change 176195315 by Zhichao Lu: Internal change 176128748 by Zhichao Lu: Internal change 175743440 by Zhichao Lu: Use Toggle instead of bool to make the layout optimizer name and usage consistent with other optimizers. -- 175578178 by Zhichao Lu: Internal change 175463518 by Zhichao Lu: Internal change 175316616 by Zhichao Lu: Internal change 175302470 by Zhichao Lu: Internal change 175300323 by Zhichao Lu: Internal change 175269680 by Zhichao Lu: Internal change 175260574 by Zhichao Lu: Internal change 175122281 by Zhichao Lu: Internal change 175111708 by Zhichao Lu: Internal change 175110183 by Zhichao Lu: Internal change 174877166 by Zhichao Lu: Internal change 174868399 by Zhichao Lu: Internal change 174754200 by Zhichao Lu: Internal change 174544534 by Zhichao Lu: Internal change 174536143 by Zhichao Lu: Internal change 174513795 by Zhichao Lu: Internal change 174463713 by Zhichao Lu: Internal change 174403525 by Zhichao Lu: Internal change 174385170 by Zhichao Lu: Internal change 174358498 by Zhichao Lu: Internal change 174249903 by Zhichao Lu: Fix nasnet image classification and object detection by moving the option to turn ON or OFF batch norm training into it's own arg_scope used only by detection -- 174216508 by Zhichao Lu: Internal change 174065370 by Zhichao Lu: Internal change 174048035 by Zhichao Lu: Fix the pointer for downloading the NAS Faster-RCNN model. -- 174042677 by Zhichao Lu: Internal change 173964116 by Zhichao Lu: Internal change 173790182 by Zhichao Lu: Internal change 173779919 by Zhichao Lu: Internal change 173753775 by Zhichao Lu: Internal change 173753160 by Zhichao Lu: Internal change 173737519 by Zhichao Lu: Internal change 173696066 by Zhichao Lu: Internal change 173611554 by Zhichao Lu: Internal change 173475124 by Zhichao Lu: Internal change 173412497 by Zhichao Lu: Internal change 173404010 by Zhichao Lu: Internal change 173375014 by Zhichao Lu: Internal change 173345107 by Zhichao Lu: Internal change 173298413 by Zhichao Lu: Internal change 173289754 by Zhichao Lu: Internal change 173275544 by Zhichao Lu: Internal change 173273275 by Zhichao Lu: Internal change 173271885 by Zhichao Lu: Internal change 173264856 by Zhichao Lu: Internal change 173263791 by Zhichao Lu: Internal change 173261215 by Zhichao Lu: Internal change 173175740 by Zhichao Lu: Internal change 173010193 by Zhichao Lu: Internal change 172815204 by Zhichao Lu: Allow for label maps in tf.Example decoding. -- 172696028 by Zhichao Lu: Internal change 172509113 by Zhichao Lu: Allow for label maps in tf.Example decoding. -- 172475999 by Zhichao Lu: Internal change 172166621 by Zhichao Lu: Internal change 172151758 by Zhichao Lu: Minor updates to some README files. As a result of these friendly issues: https://github.com/tensorflow/models/issues/2530 https://github.com/tensorflow/models/issues/2534 -- 172147420 by Zhichao Lu: Fix illegal summary name and move from slim's get_or_create_global_step deprecated use of tf.contrib.framework* to tf.train*. -- 172111377 by Zhichao Lu: Internal change 172004247 by Zhichao Lu: Internal change 171996881 by Zhichao Lu: Internal change 171835204 by Zhichao Lu: Internal change 171826090 by Zhichao Lu: Internal change 171784016 by Zhichao Lu: Internal change 171699876 by Zhichao Lu: Internal change 171053425 by Zhichao Lu: Internal change 170905734 by Zhichao Lu: Internal change 170889179 by Zhichao Lu: Internal change 170734389 by Zhichao Lu: Internal change 170705852 by Zhichao Lu: Internal change 170401574 by Zhichao Lu: Internal change 170352571 by Zhichao Lu: Internal change 170215443 by Zhichao Lu: Internal change 170184288 by Zhichao Lu: Internal change 169936898 by Zhichao Lu: Internal change 169763373 by Zhichao Lu: Fix broken GitHub links in tensorflow and tensorflow_models resulting from The Great Models Move (a.k.a. the research subfolder) -- 169744825 by Zhichao Lu: Internal change 169638135 by Zhichao Lu: Internal change 169561814 by Zhichao Lu: Internal change 169444091 by Zhichao Lu: Internal change 169292330 by Zhichao Lu: Internal change 169145185 by Zhichao Lu: Internal change 168906035 by Zhichao Lu: Internal change 168790411 by Zhichao Lu: Internal change 168708911 by Zhichao Lu: Internal change 168611969 by Zhichao Lu: Internal change 168535975 by Zhichao Lu: Internal change 168381815 by Zhichao Lu: Internal change 168244740 by Zhichao Lu: Internal change 168240024 by Zhichao Lu: Internal change 168168016 by Zhichao Lu: Internal change 168071571 by Zhichao Lu: Move display strings to below the bounding box if they would otherwise be outside the image. -- 168067771 by Zhichao Lu: Internal change 167970950 by Zhichao Lu: Internal change 167884533 by Zhichao Lu: Internal change 167626173 by Zhichao Lu: Internal change 167277422 by Zhichao Lu: Internal change 167249393 by Zhichao Lu: Internal change 167248954 by Zhichao Lu: Internal change 167189395 by Zhichao Lu: Internal change 167107797 by Zhichao Lu: Internal change 167061250 by Zhichao Lu: Internal change 166871147 by Zhichao Lu: Internal change 166867617 by Zhichao Lu: Internal change 166862112 by Zhichao Lu: Internal change 166715648 by Zhichao Lu: Internal change 166635615 by Zhichao Lu: Internal change 166383182 by Zhichao Lu: Internal change 166371326 by Zhichao Lu: Internal change 166254711 by Zhichao Lu: Internal change 166106294 by Zhichao Lu: Internal change 166081204 by Zhichao Lu: Internal change 165972262 by Zhichao Lu: Internal change 165816702 by Zhichao Lu: Internal change 165764471 by Zhichao Lu: Internal change 165724134 by Zhichao Lu: Internal change 165655829 by Zhichao Lu: Internal change 165587904 by Zhichao Lu: Internal change 165534540 by Zhichao Lu: Internal change 165177692 by Zhichao Lu: Internal change 165091822 by Zhichao Lu: Internal change 165019730 by Zhichao Lu: Internal change 165002942 by Zhichao Lu: Internal change 164897728 by Zhichao Lu: Internal change 164782618 by Zhichao Lu: Internal change 164710379 by Zhichao Lu: Internal change 164639237 by Zhichao Lu: Internal change 164069251 by Zhichao Lu: Internal change 164058169 by Zhichao Lu: Internal change 163913796 by Zhichao Lu: Internal change 163756696 by Zhichao Lu: Internal change 163524665 by Zhichao Lu: Internal change 163393399 by Zhichao Lu: Internal change 163385733 by Zhichao Lu: Internal change 162525065 by Zhichao Lu: Internal change 162376984 by Zhichao Lu: Internal change 162026661 by Zhichao Lu: Internal change 161956004 by Zhichao Lu: Internal change 161817520 by Zhichao Lu: Internal change 161718688 by Zhichao Lu: Internal change 161624398 by Zhichao Lu: Internal change 161575120 by Zhichao Lu: Internal change 161483997 by Zhichao Lu: Internal change 161462189 by Zhichao Lu: Internal change 161452968 by Zhichao Lu: Internal change 161443992 by Zhichao Lu: Internal change 161408607 by Zhichao Lu: Internal change 161262084 by Zhichao Lu: Internal change 161214023 by Zhichao Lu: Internal change 161025667 by Zhichao Lu: Internal change 160982216 by Zhichao Lu: Internal change 160666760 by Zhichao Lu: Internal change 160570489 by Zhichao Lu: Internal change 160553112 by Zhichao Lu: Internal change 160458261 by Zhichao Lu: Internal change 160349302 by Zhichao Lu: Internal change 160296092 by Zhichao Lu: Internal change 160287348 by Zhichao Lu: Internal change 160199279 by Zhichao Lu: Internal change 160160156 by Zhichao Lu: Internal change 160151954 by Zhichao Lu: Internal change 160005404 by Zhichao Lu: Internal change 159983265 by Zhichao Lu: Internal change 159819896 by Zhichao Lu: Internal change 159749419 by Zhichao Lu: Internal change 159596448 by Zhichao Lu: Internal change 159587801 by Zhichao Lu: Internal change 159587342 by Zhichao Lu: Internal change 159476256 by Zhichao Lu: Internal change 159463992 by Zhichao Lu: Internal change 159455585 by Zhichao Lu: Internal change 159270798 by Zhichao Lu: Internal change 159256633 by Zhichao Lu: Internal change 159141989 by Zhichao Lu: Internal change 159079098 by Zhichao Lu: Internal change 159078559 by Zhichao Lu: Internal change 159077055 by Zhichao Lu: Internal change 159072046 by Zhichao Lu: Internal change 159071092 by Zhichao Lu: Internal change 159069262 by Zhichao Lu: Internal change 159037430 by Zhichao Lu: Internal change 159035747 by Zhichao Lu: Internal change 159023868 by Zhichao Lu: Internal change 158939092 by Zhichao Lu: Internal change 158912561 by Zhichao Lu: Internal change 158903825 by Zhichao Lu: Internal change 158894348 by Zhichao Lu: Internal change 158884934 by Zhichao Lu: Internal change 158878010 by Zhichao Lu: Internal change 158874620 by Zhichao Lu: Internal change 158869501 by Zhichao Lu: Internal change 158842623 by Zhichao Lu: Internal change 158801298 by Zhichao Lu: Internal change 158775487 by Zhichao Lu: Internal change 158773668 by Zhichao Lu: Internal change 158771394 by Zhichao Lu: Internal change 158668928 by Zhichao Lu: Internal change 158596865 by Zhichao Lu: Internal change 158587317 by Zhichao Lu: Internal change 158586348 by Zhichao Lu: Internal change 158585707 by Zhichao Lu: Internal change 158577134 by Zhichao Lu: Internal change 158459749 by Zhichao Lu: Internal change 158459678 by Zhichao Lu: Internal change 158328972 by Zhichao Lu: Internal change 158324255 by Zhichao Lu: Internal change 158319576 by Zhichao Lu: Internal change 158290802 by Zhichao Lu: Internal change 158273041 by Zhichao Lu: Internal change 158240477 by Zhichao Lu: Internal change 158204316 by Zhichao Lu: Internal change 158154161 by Zhichao Lu: Internal change 158077203 by Zhichao Lu: Internal change 158041397 by Zhichao Lu: Internal change 158029233 by Zhichao Lu: Internal change 157976306 by Zhichao Lu: Internal change 157966896 by Zhichao Lu: Internal change 157945642 by Zhichao Lu: Internal change 157943135 by Zhichao Lu: Internal change 157942158 by Zhichao Lu: Internal change 157897866 by Zhichao Lu: Internal change 157866667 by Zhichao Lu: Internal change 157845915 by Zhichao Lu: Internal change 157842592 by Zhichao Lu: Internal change 157832761 by Zhichao Lu: Internal change 157824451 by Zhichao Lu: Internal change 157816531 by Zhichao Lu: Internal change 157782130 by Zhichao Lu: Internal change 157733752 by Zhichao Lu: Internal change 157654577 by Zhichao Lu: Internal change 157639285 by Zhichao Lu: Internal change 157530694 by Zhichao Lu: Internal change 157518469 by Zhichao Lu: Internal change 157514626 by Zhichao Lu: Internal change 157481413 by Zhichao Lu: Internal change 157267863 by Zhichao Lu: Internal change 157263616 by Zhichao Lu: Internal change 157234554 by Zhichao Lu: Internal change 157174595 by Zhichao Lu: Internal change 157169681 by Zhichao Lu: Internal change 157156425 by Zhichao Lu: Internal change 157024436 by Zhichao Lu: Internal change 157016195 by Zhichao Lu: Internal change 156941658 by Zhichao Lu: Internal change 156880859 by Zhichao Lu: Internal change 156790636 by Zhichao Lu: Internal change 156565969 by Zhichao Lu: Internal change 156522345 by Zhichao Lu: Internal change 156518570 by Zhichao Lu: Internal change 156509878 by Zhichao Lu: Internal change 156509134 by Zhichao Lu: Internal change 156472497 by Zhichao Lu: Internal change 156471429 by Zhichao Lu: Internal change 156470865 by Zhichao Lu: Internal change 156461563 by Zhichao Lu: Internal change 156437521 by Zhichao Lu: Internal change 156334994 by Zhichao Lu: Internal change 156319604 by Zhichao Lu: Internal change 156234305 by Zhichao Lu: Internal change 156226207 by Zhichao Lu: Internal change 156215347 by Zhichao Lu: Internal change 156127227 by Zhichao Lu: Internal change 156120405 by Zhichao Lu: Internal change 156113752 by Zhichao Lu: Internal change 156098936 by Zhichao Lu: Internal change 155924066 by Zhichao Lu: Internal change 155883241 by Zhichao Lu: Internal change 155806887 by Zhichao Lu: Internal change 155641849 by Zhichao Lu: Internal change 155593034 by Zhichao Lu: Internal change 155570702 by Zhichao Lu: Internal change 155515306 by Zhichao Lu: Internal change 155514787 by Zhichao Lu: Internal change 155445237 by Zhichao Lu: Internal change 155438672 by Zhichao Lu: Internal change 155264448 by Zhichao Lu: Internal change 155222148 by Zhichao Lu: Internal change 155106590 by Zhichao Lu: Internal change 155090562 by Zhichao Lu: Internal change 154973775 by Zhichao Lu: Internal change 154972880 by Zhichao Lu: Internal change 154871596 by Zhichao Lu: Internal change 154835007 by Zhichao Lu: Internal change 154788175 by Zhichao Lu: Internal change 154731169 by Zhichao Lu: Internal change 154721261 by Zhichao Lu: Internal change 154594626 by Zhichao Lu: Internal change 154588305 by Zhichao Lu: Internal change 154578994 by Zhichao Lu: Internal change 154571515 by Zhichao Lu: Internal change 154552873 by Zhichao Lu: Internal change 154549672 by Zhichao Lu: Internal change 154463631 by Zhichao Lu: Internal change 154437690 by Zhichao Lu: Internal change 154412359 by Zhichao Lu: Internal change 154374026 by Zhichao Lu: Internal change 154361648 by Zhichao Lu: Internal change 154310164 by Zhichao Lu: Internal change 154220862 by Zhichao Lu: Internal change 154187281 by Zhichao Lu: Internal change 154186651 by Zhichao Lu: Internal change 154119783 by Zhichao Lu: Internal change 154114285 by Zhichao Lu: Internal change 154095717 by Zhichao Lu: Internal change 154057972 by Zhichao Lu: Internal change 154055285 by Zhichao Lu: Internal change 153659288 by Zhichao Lu: Internal change 153637797 by Zhichao Lu: Internal change 153561771 by Zhichao Lu: Internal change 153540765 by Zhichao Lu: Internal change 153496128 by Zhichao Lu: Internal change 153473323 by Zhichao Lu: Internal change 153368812 by Zhichao Lu: Internal change 153367292 by Zhichao Lu: Internal change 153201890 by Zhichao Lu: Internal change 153074177 by Zhichao Lu: Internal change 152980017 by Zhichao Lu: Internal change 152978434 by Zhichao Lu: Internal change 152951821 by Zhichao Lu: Internal change 152904076 by Zhichao Lu: Internal change 152883703 by Zhichao Lu: Internal change 152869747 by Zhichao Lu: Internal change 152827463 by Zhichao Lu: Internal change 152756886 by Zhichao Lu: Internal change 152752840 by Zhichao Lu: Internal change 152736347 by Zhichao Lu: Internal change 152728184 by Zhichao Lu: Internal change 152720120 by Zhichao Lu: Internal change 152710964 by Zhichao Lu: Internal change 152706735 by Zhichao Lu: Internal change 152681133 by Zhichao Lu: Internal change 152517758 by Zhichao Lu: Internal change 152516381 by Zhichao Lu: Internal change 152511258 by Zhichao Lu: Internal change 152319164 by Zhichao Lu: Internal change 152316404 by Zhichao Lu: Internal change 152309261 by Zhichao Lu: Internal change 152308007 by Zhichao Lu: Internal change 152296551 by Zhichao Lu: Internal change 152188069 by Zhichao Lu: Internal change 152158644 by Zhichao Lu: Internal change 152153578 by Zhichao Lu: Internal change 152152285 by Zhichao Lu: Internal change 152055035 by Zhichao Lu: Internal change 152036778 by Zhichao Lu: Internal change 152020728 by Zhichao Lu: Internal change 152014842 by Zhichao Lu: Internal change 151848225 by Zhichao Lu: Internal change 151741308 by Zhichao Lu: Internal change 151740499 by Zhichao Lu: Internal change 151736189 by Zhichao Lu: Internal change 151612892 by Zhichao Lu: Internal change 151599502 by Zhichao Lu: Internal change 151538547 by Zhichao Lu: Internal change 151496530 by Zhichao Lu: Internal change 151476070 by Zhichao Lu: Internal change 151448662 by Zhichao Lu: Internal change 151411627 by Zhichao Lu: Internal change 151397737 by Zhichao Lu: Internal change 151169523 by Zhichao Lu: Internal change 151148956 by Zhichao Lu: Internal change 150944227 by Zhichao Lu: Internal change 150276683 by Zhichao Lu: Internal change 149986687 by Zhichao Lu: Internal change 149218749 by Zhichao Lu: Internal change PiperOrigin-RevId: 184048729
-