1. 10 Jul, 2020 1 commit
  2. 26 May, 2020 1 commit
    • pkulzc's avatar
      Release MobileDet code and model, and require tf_slim installation for OD API. (#8562) · 451906e4
      pkulzc authored
      
      
      * Merged commit includes the following changes:
      311933687  by Sergio Guadarrama:
      
          Removes spurios use of tf.compat.v2, which results in spurious tf.compat.v1.compat.v2. Adds basic test to nasnet_utils.
          Replaces all remaining import tensorflow as tf with import tensorflow.compat.v1 as tf
      
      --
      311766063  by Sergio Guadarrama:
      
          Removes explicit tf.compat.v1 in all call sites (we already import tf.compat.v1, so this code was  doing tf.compat.v1.compat.v1). The existing code worked in latest version of tensorflow, 2.2, (and 1.15) but not in 1.14 or in 2.0.0a, this CL fixes it.
      
      --
      311624958  by Sergio Guadarrama:
      
          Updates README that doesn't render properly in github documentation
      
      --
      310980959  by Sergio Guadarrama:
      
          Moves research_models/slim off tf.contrib.slim/layers/framework to tf_slim
      
      --
      310263156  by Sergio Guadarrama:
      
          Adds model breakdown for MobilenetV3
      
      --
      308640516  by Sergio Guadarrama:
      
          Internal change
      
      308244396  by Sergio Guadarrama:
      
          GroupNormalization support for MobilenetV3.
      
      --
      307475800  by Sergio Guadarrama:
      
          Internal change
      
      --
      302077708  by Sergio Guadarrama:
      
          Remove `disable_tf2` behavior from slim py_library targets
      
      --
      301208453  by Sergio Guadarrama:
      
          Automated refactoring to make code Python 3 compatible.
      
      --
      300816672  by Sergio Guadarrama:
      
          Internal change
      
      299433840  by Sergio Guadarrama:
      
          Internal change
      
      299221609  by Sergio Guadarrama:
      
          Explicitly disable Tensorflow v2 behaviors for all TF1.x binaries and tests
      
      --
      299179617  by Sergio Guadarrama:
      
          Internal change
      
      299040784  by Sergio Guadarrama:
      
          Internal change
      
      299036699  by Sergio Guadarrama:
      
          Internal change
      
      298736510  by Sergio Guadarrama:
      
          Internal change
      
      298732599  by Sergio Guadarrama:
      
          Internal change
      
      298729507  by Sergio Guadarrama:
      
          Internal change
      
      298253328  by Sergio Guadarrama:
      
          Internal change
      
      297788346  by Sergio Guadarrama:
      
          Internal change
      
      297785278  by Sergio Guadarrama:
      
          Internal change
      
      297783127  by Sergio Guadarrama:
      
          Internal change
      
      297725870  by Sergio Guadarrama:
      
          Internal change
      
      297721811  by Sergio Guadarrama:
      
          Internal change
      
      297711347  by Sergio Guadarrama:
      
          Internal change
      
      297708059  by Sergio Guadarrama:
      
          Internal change
      
      297701831  by Sergio Guadarrama:
      
          Internal change
      
      297700038  by Sergio Guadarrama:
      
          Internal change
      
      297670468  by Sergio Guadarrama:
      
          Internal change.
      
      --
      297350326  by Sergio Guadarrama:
      
          Explicitly replace "import tensorflow" with "tensorflow.compat.v1" for TF2.x migration
      
      --
      297201668  by Sergio Guadarrama:
      
          Explicitly replace "import tensorflow" with "tensorflow.compat.v1" for TF2.x migration
      
      --
      294483372  by Sergio Guadarrama:
      
          Internal change
      
      PiperOrigin-RevId: 311933687
      
      * Merged commit includes the following changes:
      312578615  by Menglong Zhu:
      
          Modify the LSTM feature extractors to be python 3 compatible.
      
      --
      311264357  by Menglong Zhu:
      
          Removes contrib.slim
      
      --
      308957207  by Menglong Zhu:
      
          Automated refactoring to make code Python 3 compatible.
      
      --
      306976470  by yongzhe:
      
          Internal change
      
      306777559  by Menglong Zhu:
      
          Internal change
      
      --
      299232507  by lzyuan:
      
          Internal update.
      
      --
      299221735  by lzyuan:
      
          Add small epsilon on max_range for quantize_op to prevent range collapse.
      
      --
      
      PiperOrigin-RevId: 312578615
      
      * Merged commit includes the following changes:
      310447280  by lzc:
      
          Internal changes.
      
      --
      
      PiperOrigin-RevId: 310447280
      Co-authored-by: default avatarSergio Guadarrama <sguada@google.com>
      Co-authored-by: default avatarMenglong Zhu <menglong@google.com>
      451906e4
  3. 08 Aug, 2018 1 commit
    • pkulzc's avatar
      Update object detection post processing and fixes boxes padding/clipping issue. (#5026) · 59f7e80a
      pkulzc authored
      * Merged commit includes the following changes:
      207771702  by Zhichao Lu:
      
          Refactoring evaluation utilities so that it is easier to introduce new DetectionEvaluators with eval_metric_ops.
      
      --
      207758641  by Zhichao Lu:
      
          Require tensorflow version 1.9+ for running object detection API.
      
      --
      207641470  by Zhichao Lu:
      
          Clip `num_groundtruth_boxes` in pad_input_data_to_static_shapes() to `max_num_boxes`. This prevents a scenario where tensors are sliced to an invalid range in model_lib.unstack_batch().
      
      --
      207621728  by Zhichao Lu:
      
          This CL adds a FreezableBatchNorm that inherits from the Keras BatchNormalization layer, but supports freezing the `training` parameter at construction time instead of having to do it in the `call` method.
      
          It also adds a method to the `KerasLayerHyperparams` class that will build an appropriate FreezableBatchNorm layer according to the hyperparameter configuration. If batch_norm is disabled, this method returns and Identity layer.
      
          These will be used to simplify the conversion to Keras APIs.
      
      --
      207610524  by Zhichao Lu:
      
          Update anchor generators and box predictors for python3 compatibility.
      
      --
      207585122  by Zhichao Lu:
      
          Refactoring convolutional box predictor into separate prediction heads.
      
      --
      207549305  by Zhichao Lu:
      
          Pass all 1s for batch weights if nothing is specified in GT.
      
      --
      207336575  by Zhichao Lu:
      
          Move the new argument 'target_assigner_instance' to the end of the list of arguments to the ssd_meta_arch constructor for backwards compatibility.
      
      --
      207327862  by Zhichao Lu:
      
          Enable support for float output in quantized custom op for postprocessing in SSD Mobilenet model.
      
      --
      207323154  by Zhichao Lu:
      
          Bug fix: change dict.iteritems() to dict.items()
      
      --
      207301109  by Zhichao Lu:
      
          Integrating expected_classification_loss_under_sampling op as an option in the ssd_meta_arch
      
      --
      207286221  by Zhichao Lu:
      
          Adding an option to weight regression loss with foreground scores from the ground truth labels.
      
      --
      207231739  by Zhichao Lu:
      
          Explicitly mentioning the argument names when calling the batch target assigner.
      
      --
      207206356  by Zhichao Lu:
      
          Add include_trainable_variables field to train config to better handle trainable variables.
      
      --
      207135930  by Zhichao Lu:
      
          Internal change.
      
      --
      206862541  by Zhichao Lu:
      
          Do not unpad the outputs from batch_non_max_suppression before sampling.
      
          Since BalancedPositiveNegativeSampler takes an indicator for valid positions to sample from we can pass the output from NMS directly into Sampler.
      
      --
      
      PiperOrigin-RevId: 207771702
      
      * Remove unused doc.
      59f7e80a
  4. 22 Mar, 2018 1 commit
    • pkulzc's avatar
      Internal changes for object detection. (#3656) · 001a2a61
      pkulzc authored
      * Force cast of num_classes to integer
      
      PiperOrigin-RevId: 188335318
      
      * Updating config util to allow overwriting of cosine decay learning rates.
      
      PiperOrigin-RevId: 188338852
      
      * Make box_list_ops.py and box_list_ops_test.py work with C API enabled.
      
      The C API has improved shape inference over the original Python
      code. This causes some previously-working conds to fail. Switching to smart_cond fixes this.
      
      Another effect of the improved shape inference is that one of the
      failures tested gets caught earlier, so I modified the test to reflect
      this.
      
      PiperOrigin-RevId: 188409792
      
      * Fix parallel event file writing issue.
      
      Without this change, the event files might get corrupted when multiple evaluations are run in parallel.
      
      PiperOrigin-RevId: 188502560
      
      * Deprecating the boolean flag of from_detection_checkpoint.
      
      Replace with a string field fine_tune_checkpoint_type to train_config to provide extensibility. The fine_tune_checkpoint_type can currently take value of `detection`, `classification`, or others when the restore_map is overwritten.
      
      PiperOrigin-RevId: 188518685
      
      * Automated g4 rollback of changelist 188502560
      
      PiperOrigin-RevId: 188519969
      
      * Introducing eval metrics specs for Coco Mask metrics. This allows metrics to be computed in tensorflow using the tf.learn Estimator.
      
      PiperOrigin-RevId: 188528485
      
      * Minor fix to make object_detection/metrics/coco_evaluation.py python3 compatible.
      
      PiperOrigin-RevId: 188550683
      
      * Updating eval_util to handle eval_metric_ops from multiple `DetectionEvaluator`s.
      
      PiperOrigin-RevId: 188560474
      
      * Allow tensor input for new_height and new_width for resize_image.
      
      PiperOrigin-RevId: 188561908
      
      * Fix typo in fine_tune_checkpoint_type name in trainer.
      
      PiperOrigin-RevId: 188799033
      
      * Adding mobilenet feature extractor to object detection.
      
      PiperOrigin-RevId: 188916897
      
      * Allow label maps to optionally contain an explicit background class with id zero.
      
      PiperOrigin-RevId: 188951089
      
      * Fix boundary conditions in random_pad_to_aspect_ratio to ensure that min_scale is always less than max_scale.
      
      PiperOrigin-RevId: 189026868
      
      * Fallback on from_detection_checkpoint option if fine_tune_checkpoint_type isn't set.
      
      PiperOrigin-RevId: 189052833
      
      * Add proper names for learning rate schedules so we don't see cryptic names on tensorboard.
      
      PiperOrigin-RevId: 189069837
      
      * Enforcing that all datasets are batched (and then unbatched in the model) with batch_size >= 1.
      
      PiperOrigin-RevId: 189117178
      
      * Adding regularization to total loss returned from DetectionModel.loss().
      
      PiperOrigin-RevId: 189189123
      
      * Standardize the names of loss scalars (for SSD, Faster R-CNN and R-FCN) in both training and eval so they can be compared on tensorboard.
      
      Log localization and classification losses in evaluation.
      
      PiperOrigin-RevId: 189189940
      
      * Remove negative test from box list ops test.
      
      PiperOrigin-RevId: 189229327
      
      * Add an option to warmup learning rate in manual stepping schedule.
      
      PiperOrigin-RevId: 189361039
      
      * Replace tf.contrib.slim.tfexample_decoder.LookupTensor with object_detection.data_decoders.tf_example_decoder.LookupTensor.
      
      PiperOrigin-RevId: 189388556
      
      * Force regularization summary variables under specific family names.
      
      PiperOrigin-RevId: 189393190
      
      * Automated g4 rollback of changelist 188619139
      
      PiperOrigin-RevId: 189396001
      
      * Remove step 0 schedule since we do a hard check for it after cl/189361039
      
      PiperOrigin-RevId: 189396697
      
      * PiperOrigin-RevId: 189040463
      
      * PiperOrigin-RevId: 189059229
      
      * PiperOrigin-RevId: 189214402
      
      * Force regularization summary variables under specific family names.
      
      PiperOrigin-RevId: 189393190
      
      * Automated g4 rollback of changelist 188619139
      
      PiperOrigin-RevId: 189396001
      
      * Make slim python3 compatible.
      
      * Monir fixes.
      
      * Add TargetAssignment summaries in a separate family.
      
      PiperOrigin-RevId: 189407487
      
      * 1. Setting `family` keyword arg prepends the summary names twice with the same name. Directly adding family suffix to the name gets rid of this problem.
      2. Make sure the eval losses have the same name.
      
      PiperOrigin-RevId: 189434618
      
      * Minor fixes to make object detection tf 1.4 compatible.
      
      PiperOrigin-RevId: 189437519
      
      * Call the base of mobilenet_v1 feature extractor under the right arg scope and set batchnorm is_training based on the value passed in the constructor.
      
      PiperOrigin-RevId: 189460890
      
      * Automated g4 rollback of changelist 188409792
      
      PiperOrigin-RevId: 189463882
      
      * Update object detection syncing.
      
      PiperOrigin-RevId: 189601955
      
      * Add an option to warmup learning rate, hold it constant for a certain number of steps and cosine decay it.
      
      PiperOrigin-RevId: 189606169
      
      * Let the proposal feature extractor function in faster_rcnn meta architectures return the activations (end_points).
      
      PiperOrigin-RevId: 189619301
      
      * Fixed bug which caused masks to be mostly zeros (caused by detection_boxes being in absolute coordinates if scale_to_absolute=True.
      
      PiperOrigin-RevId: 189641294
      
      * Open sourcing Mobilenetv2 + SSDLite.
      
      PiperOrigin-RevId: 189654520
      
      * Remove unused files.
      001a2a61
  5. 08 Mar, 2018 1 commit
    • Zhichao Lu's avatar
      Add FAQ to object detection and replace... · ec16e472
      Zhichao Lu authored
      Add FAQ to object detection and replace tf.contrib.slim.tfexample_decoder.BackupHandler with object_detection.data_decoders.tf_example_decoder.BackupHandler.
      
      PiperOrigin-RevId: 188191275
      ec16e472