"vscode:/vscode.git/clone" did not exist on "82b0a07274f54869560a9e894d9249f204c2dd42"
- 02 Nov, 2018 1 commit
-
-
pkulzc authored
* Internal change. PiperOrigin-RevId: 213914693 * Add original_image_spatial_shape tensor in input dictionary to store shape of the original input image PiperOrigin-RevId: 214018767 * Remove "groundtruth_confidences" from decoders use "groundtruth_weights" to indicate label confidence. This also solves a bug that only surfaced now - random crop routines in core/preprocessor.py did not correctly handle "groundtruth_weight" tensors returned by the decoders. PiperOrigin-RevId: 214091843 * Update CocoMaskEvaluator to allow for a batch of image info, rather than a single image. PiperOrigin-RevId: 214295305 * Adding the option to be able to summarize gradients. PiperOrigin-RevId: 214310875 * Adds FasterRCNN inference on CPU 1. Adds a flag use_static_shapes_for_eval to restrict to the ops that guarantees static shape. 2. No filtering of overlapping anchors while clipping the anchors when use_static_shapes_for_eval is set to True. 3. Adds test for faster_rcnn_meta_arch for predict and postprocess in inference mode for first and second stages. PiperOrigin-RevId: 214329565 * Fix model_lib eval_spec_names assignment (integer->string). PiperOrigin-RevId: 214335461 * Refactor Mask HEAD to optionally upsample after applying convolutions on ROI crops. PiperOrigin-RevId: 214338440 * Uses final_exporter_name as exporter_name for the first eval spec for backward compatibility. PiperOrigin-RevId: 214522032 * Add reshaped `mask_predictions` tensor to the prediction dictionary in `_predict_third_stage` method to allow computing mask loss in eval job. PiperOrigin-RevId: 214620716 * Add support for fully conv training to fpn. PiperOrigin-RevId: 214626274 * Fix the proprocess() function in Resnet v1 to make it work for any number of input channels. Note: If the #channels != 3, this will simply skip the mean subtraction in preprocess() function. PiperOrigin-RevId: 214635428 * Wrap result_dict_for_single_example in eval_util to run for batched examples. PiperOrigin-RevId: 214678514 * Adds PNASNet-based (ImageNet model) feature extractor for SSD. PiperOrigin-RevId: 214988331 * Update documentation PiperOrigin-RevId: 215243502 * Correct index used to compute number of groundtruth/detection boxes in COCOMaskEvaluator. Due to an incorrect indexing in cl/214295305 only the first detection mask and first groundtruth mask for a given image are fed to the COCO Mask evaluation library. Since groundtruth masks are arranged in no particular order, the first and highest scoring detection mask (detection masks are ordered by score) won't match the the first and only groundtruth retained in all cases. This is I think why mask evaluation metrics do not get better than ~11 mAP. Note that this code path is only active when using model_main.py binary for evaluation. This change fixes the indices and modifies an existing test case to cover it. PiperOrigin-RevId: 215275936 * Fixing grayscale_image_resizer to accept mask as input. PiperOrigin-RevId: 215345836 * Add an option not to clip groundtruth boxes during preprocessing. Clipping boxes adversely affects training for partially occluded or large objects, especially for fully conv models. Clipping already occurs during postprocessing, and should not occur during training. PiperOrigin-RevId: 215613379 * Always return recalls and precisions with length equal to the number of classes. The previous behavior of ObjectDetectionEvaluation was somewhat dangerous: when no groundtruth boxes were present, the lists of per-class precisions and recalls were simply truncated. Unless you were aware of this phenomenon (and consulted the `num_gt_instances_per_class` vector) it was difficult to associate each metric with each class. PiperOrigin-RevId: 215633711 * Expose the box feature node in SSD. PiperOrigin-RevId: 215653316 * Fix ssd mobilenet v2 _CONV_DEFS overwriting issue. PiperOrigin-RevId: 215654160 * More documentation updates PiperOrigin-RevId: 215656580 * Add pooling + residual option in multi_resolution_feature_maps. It adds an average pooling and a residual layer between feature maps with matching depth. Designed to be used with WeightSharedBoxPredictor. PiperOrigin-RevId: 215665619 * Only call create_modificed_mobilenet_config on init if use_depthwise is true. PiperOrigin-RevId: 215784290 * Only call create_modificed_mobilenet_config on init if use_depthwise is true. PiperOrigin-RevId: 215837524 * Don't prune keypoints if clip_boxes is false. PiperOrigin-RevId: 216187642 * Makes sure "key" field exists in the result dictionary. PiperOrigin-RevId: 216456543 * Add add_background_class parameter to allow disabling the inclusion of a background class. PiperOrigin-RevId: 216567612 * Update expected_classification_loss_under_sampling to better account for expected sampling. PiperOrigin-RevId: 216712287 * Let the evaluation receive a evaluation class in its constructor. PiperOrigin-RevId: 216769374 * This CL adds model building & training support for end-to-end Keras-based SSD models. If a Keras feature extractor's name is specified in the model config (e.g. 'ssd_mobilenet_v2_keras'), the model will use that feature extractor and a corresponding Keras-based box predictor. This CL makes sure regularization losses & batch norm updates work correctly when training models that have Keras-based components. It also updates the default hyperparameter settings of the keras-based mobilenetV2 (when not overriding hyperparams) to more closely match the legacy Slim training scope. PiperOrigin-RevId: 216938707 * Adding the ability in the coco evaluator to indicate whether an image has been annotated. For a non-annotated image, detections and groundtruth are not supplied. PiperOrigin-RevId: 217316342 * Release the 8k minival dataset ids for MSCOCO, used in Huang et al. "Speed/accuracy trade-offs for modern convolutional object detectors" (https://arxiv.org/abs/1611.10012) PiperOrigin-RevId: 217549353 * Exposes weighted_sigmoid_focal loss for faster rcnn classifier PiperOrigin-RevId: 217601740 * Add detection_features to output nodes. The shape of the feature is [batch_size, max_detections, depth]. PiperOrigin-RevId: 217629905 * FPN uses a custom NN resize op for TPU-compatibility. Replace this op with the Tensorflow version at export time for TFLite-compatibility. PiperOrigin-RevId: 217721184 * Compute `num_groundtruth_boxes` in inputs.tranform_input_data_fn after data augmentation instead of decoders. PiperOrigin-RevId: 217733432 * 1. Stop gradients from flowing into groundtruth masks with zero paddings. 2. Normalize pixelwise cross entropy loss across the whole batch. PiperOrigin-RevId: 217735114 * Optimize Input pipeline for Mask R-CNN on TPU with blfoat16: improve the step time from: 1663.6 ms -> 1184.2 ms, about 28.8% improvement. PiperOrigin-RevId: 217748833 * Fixes to export a TPU compatible model Adds nodes to each of the output tensor. Also increments the value of class labels by 1. PiperOrigin-RevId: 217856760 * API changes: - change the interface of target assigner to return per-class weights. - change the interface of classification loss to take per-class weights. PiperOrigin-RevId: 217968393 * Add an option to override pipeline config in export_saved_model using command line arg PiperOrigin-RevId: 218429292 * Include Quantized trained MobileNet V2 SSD and FaceSsd in model zoo. PiperOrigin-RevId: 218530947 * Write final config to disk in `train` mode only. PiperOrigin-RevId: 218735512
-
- 11 May, 2018 1 commit
-
-
Zhichao Lu authored
196161788 by Zhichao Lu: Add eval_on_train_steps parameter. Since the number of samples in train dataset is usually different to the number of samples in the eval dataset. -- 196151742 by Zhichao Lu: Add an optional random sampling process for SSD meta arch and update mean stddev coder to use default std dev when corresponding tensor is not added to boxlist field. -- 196148940 by Zhichao Lu: Release ssdlite mobilenet v2 coco trained model. -- 196058528 by Zhichao Lu: Apply FPN feature map generation before we add additional layers on top of resnet feature extractor. -- 195818367 by Zhichao Lu: Add support for exporting detection keypoints. -- 195745420 by Zhichao Lu: Introduce include_metrics_per_category option to Object Detection eval_config. -- 195734733 by Zhichao Lu: Rename SSDLite config to be more explicit. -- 195717383 by Zhichao Lu: Add quantized training to object_detection. -- 195683542 by Zhichao Lu: Fix documentation for the interaction of fine_tune_checkpoint_type and load_all_detection_checkpoint_vars interaction. -- 195668233 by Zhichao Lu: Using batch size from params dictionary if present. -- 195570173 by Zhichao Lu: A few fixes to get new estimator API eval to match legacy detection eval binary by (1) plumbing `is_crowd` annotations through to COCO evaluator, (2) setting the `sloppy` flag in tf.contrib.data.parallel_interleave based on whether shuffling is enabled, and (3) saving the original image instead of the resized original image, which allows for small/medium/large mAP metrics to be properly computed. -- 195316756 by Zhichao Lu: Internal change -- PiperOrigin-RevId: 196161788
-
- 01 May, 2018 1 commit
-
-
pkulzc authored
* Adding option for one_box_for_all_classes to the box_predictor PiperOrigin-RevId: 192813444 * Extend to accept different ratios of conv channels. PiperOrigin-RevId: 192837477 * Remove inaccurate caveat from proto file. PiperOrigin-RevId: 192850747 * Add option to set dropout for classification net in weight shared box predictor. PiperOrigin-RevId: 192922089 * fix flakiness in testSSDRandomCropWithMultiClassScores due to randomness. PiperOrigin-RevId: 193067658 * Post-process now works again in train mode. PiperOrigin-RevId: 193087707 * Adding support for reading in logits as groundtruth labels and applying an optional temperature (scaling) before softmax in support of distillation. PiperOrigin-RevId: 193119411 * Add a util function to visualize value histogram as a tf.summary.image. PiperOrigin-RevId: 193137342 * Do not add batch norm parameters to final conv2d ops that predict boxes encodings and class scores in weight shared conv box predictor. This allows us to set proper bias and force initial predictions to be background when using focal loss. PiperOrigin-RevId: 193204364 * Make sure the final layers are also resized proportional to conv_depth_ratio. PiperOrigin-RevId: 193228972 * Remove deprecated batch_norm_trainable field from ssd mobilenet v2 config PiperOrigin-RevId: 193244778 * Updating coco evaluation metrics to allow for a batch of image info, rather than a single image. PiperOrigin-RevId: 193382651 * Update protobuf requirements to 3+ in installation docs. PiperOrigin-RevId: 193409179 * Add support for training keypoints. PiperOrigin-RevId: 193576336 * Fix data augmentation functions. PiperOrigin-RevId: 193737238 * Read the default batch size from config file. PiperOrigin-RevId: 193959861 * Fixing a bug in the coco evaluator. PiperOrigin-RevId: 193974479 * num_gt_boxes_per_image and num_det_boxes_per_image value incorrect. Should be not the expand dim. PiperOrigin-RevId: 194122420 * Add option to evaluate any checkpoint (without requiring write access to that directory and overwriting any existing logs there). PiperOrigin-RevId: 194292198 * PiperOrigin-RevId: 190346687 * - Expose slim arg_scope function to compute keys to enable tessting. - Add is_training=None option to mobinenet arg_scopes. This allows the users to set is_training from an outer scope. PiperOrigin-RevId: 190997959 * Add an option to not set slim arg_scope for batch_norm is_training parameter. This enables users to set the is_training parameter from an outer scope. PiperOrigin-RevId: 191611934 * PiperOrigin-RevId: 191955231 * PiperOrigin-RevId: 193254125 * PiperOrigin-RevId: 193371562 * PiperOrigin-RevId: 194085628
-
- 27 Feb, 2018 1 commit
-
-
Zhichao Lu authored
187187978 by Zhichao Lu: Only updating hyperparameters if they have non-null values. -- 187097690 by Zhichao Lu: Rewrite some conditions a bit more clearly. -- 187085190 by Zhichao Lu: More informative error message. -- 186935376 by Zhichao Lu: Added option to evaluator.evaluate to use custom evaluator objects. -- 186808249 by Zhichao Lu: Fix documentation re: number of stages. -- 186775014 by Zhichao Lu: Change anchor generator interface to return a list of BoxLists containing anchors for different feature map layers. -- 186729028 by Zhichao Lu: Minor fixes to object detection. -- 186723716 by Zhichao Lu: Fix tf_example_decoder.py initailization issue. -- 186668505 by Zhichao Lu: Remove unused import. -- 186475361 by Zhichao Lu: Update the box predictor interface to return list of predictions - one from each feature map - instead of stacking them into one large tensor. -- 186410844 by Zhichao Lu: Fix PythonPath Dependencies. -- 186365384 by Zhichao Lu: Made some of the functions in exporter public so they can be reused. -- 186341438 by Zhichao Lu: Re-introducing check that label-map-path must be a valid (non-empty) string prior to overwriting pipeline config. -- 186036984 by Zhichao Lu: Adding default hyperparameters and allowing for overriding them via flags. -- 186026006 by Zhichao Lu: Strip `eval_` prefix from name argument give to TPUEstimator.evaluate since it adds the same prefix internally. -- 186016042 by Zhichao Lu: Add an option to evaluate models on training data. -- 185944986 by Zhichao Lu: let _update_label_map_path go through even if the path is empty -- 185860781 by Zhichao Lu: Add random normal initializer option to hyperparams builder. Scale the regression losses outside of the box encoder by adjusting huber loss delta and regression loss weight. -- 185846325 by Zhichao Lu: Add an option to normalize localization loss by the code size(number of box coordinates) in SSD Meta architecture. -- 185761217 by Zhichao Lu: Change multiscale_grid_anchor_generator to return anchors in normalized coordinates by default and add option to configure it. In SSD meta architecture, TargetAssigner operates in normalized coordinate space (i.e, groundtruth boxes are in normalized coordinates) hence we need the option to generate anchors in normalized coordinates. -- 185747733 by Zhichao Lu: Change the smooth L1 localization implementationt to use tf.losses.huber_loss and expose the delta parameter in the proto. -- 185715309 by Zhichao Lu: Obviates the need for prepadding on mobilenet v1 and v2 for fully convolutional models. -- 185685695 by Zhichao Lu: Fix manual stepping schedule to return first rate when there are no boundaries -- 185621650 by Zhichao Lu: Added target assigner proto for configuring negative class weights. -- PiperOrigin-RevId: 187187978
-
- 01 Feb, 2018 1 commit
-
-
Zhichao Lu authored
184048729 by Zhichao Lu: Modify target_assigner so that it creates regression targets taking keypoints into account. -- 184027183 by Zhichao Lu: Resnet V1 FPN based feature extractors for SSD meta architecture in Object Detection V2 API. -- 184004730 by Zhichao Lu: Expose a lever to override the configured mask_type. -- 183933113 by Zhichao Lu: Weight shared convolutional box predictor as described in https://arxiv.org/abs/1708.02002 -- 183929669 by Zhichao Lu: Expanding box list operations for future data augmentations. -- 183916792 by Zhichao Lu: Fix unrecognized assertion function in tests. -- 183906851 by Zhichao Lu: - Change ssd meta architecture to use regression weights to compute loss normalizer. -- 183871003 by Zhichao Lu: Fix config_util_test wrong dependency. -- 183782120 by Zhichao Lu: Add __init__ file to third_party directories. -- 183779109 by Zhichao Lu: Setup regular version s...
-
- 27 Oct, 2017 1 commit
-
-
Vivek Rathod authored
-
- 21 Sep, 2017 1 commit
-
-
Neal Wu authored
-
- 15 Jun, 2017 1 commit
-
-
derekjchow authored
For details see our paper: "Speed/accuracy trade-offs for modern convolutional object detectors." Huang J, Rathod V, Sun C, Zhu M, Korattikara A, Fathi A, Fischer I, Wojna Z, Song Y, Guadarrama S, Murphy K, CVPR 2017 https://arxiv.org/abs/1611.10012
-