1. 06 Jun, 2021 2 commits
  2. 09 Apr, 2021 1 commit
    • Reed Wanderman-Milne's avatar
      Remove dynamic_loss_scale argument to define_performance. · e353e4e5
      Reed Wanderman-Milne authored
      All models which support loss scaling support dynamic loss scaling, so the argument has no purpose. It used to be that some models scaled the loss manually instead of using a LossScaleOptimizer, and so did not support dynamic loss scaling.
      
      PiperOrigin-RevId: 367719521
      e353e4e5
  3. 06 Apr, 2021 1 commit
  4. 28 Feb, 2021 2 commits
  5. 24 Jan, 2021 1 commit
  6. 12 Aug, 2020 2 commits
  7. 29 Apr, 2020 1 commit
  8. 25 Apr, 2020 1 commit
  9. 22 Apr, 2020 1 commit
  10. 17 Mar, 2020 1 commit
  11. 05 Mar, 2020 1 commit
  12. 02 Mar, 2020 1 commit
  13. 25 Feb, 2020 1 commit
  14. 27 Nov, 2019 1 commit
  15. 28 Oct, 2019 1 commit
  16. 21 Oct, 2019 1 commit
  17. 16 Oct, 2019 1 commit
    • Reed Wanderman-Milne's avatar
      Add support for the tf.keras.mixed_precision API in NCF · cb913691
      Reed Wanderman-Milne authored
      To test, I did 50 fp32 runs and 50 fp16 runs. I used the following command:
      
      python ncf_keras_main.py --dataset=ml-20m --num_gpus=1 --train_epochs=10 --clean --batch_size=99000 --learning_rate=0.00382059 --beta1=0.783529 --beta2=0.909003 --epsilon=1.45439e-7 --layers=256,256,128,64 --num_factors=64 --hr_threshold=0.635 --ml_perf --nouse_synthetic_data --data_dir ~/ncf_data_dir_python3 --model_dir ~/tmp_model_dir --keras_use_ctl
      
      For the fp16 runs, I added --dtype=fp16. The average hit-rate for both fp16 and fp32 was 0.6365. I also did 50 runs with the mixed precision graph rewrite, and the average hit-rate was 0.6363. The difference is likely due to noise.
      
      PiperOrigin-RevId: 275059871
      cb913691
  18. 07 Oct, 2019 1 commit
  19. 09 Sep, 2019 1 commit
  20. 04 Sep, 2019 1 commit
  21. 30 Aug, 2019 1 commit
  22. 26 Aug, 2019 1 commit
  23. 23 Aug, 2019 1 commit
  24. 20 Aug, 2019 2 commits
  25. 19 Aug, 2019 1 commit
    • Reed Wanderman-Milne's avatar
      Do not expose --max_train_steps in models that do not use it. · 824ff2d6
      Reed Wanderman-Milne authored
      Only the V1 resnet model uses --max_train_steps. This unexposes the flag in the keras_application_models, mnist, keras resnet, CTL resnet Models. Before this change, such models allowed the flag to be specified, but ignored it.
      
      I also removed the "max_train" argument from the run_synthetic function, since this only had any meaning for the V1 resnet model. Instead, the V1 resnet model now directly passes --max_train_steps=1 to run_synthetic.
      
      PiperOrigin-RevId: 264269836
      824ff2d6
  26. 16 Aug, 2019 1 commit
    • Ayush Dubey's avatar
      Add multi-worker benchmarks to Keras ResNet model. · ff6c3b1e
      Ayush Dubey authored
      Also add `worker_hosts` and `task_index` flags.  These flags enable running the
      model over multiple hosts by passing the cluster information via command line.
      
      Setting `TF_CONFIG` will continue to work.
      
      PiperOrigin-RevId: 263825245
      ff6c3b1e
  27. 06 Aug, 2019 1 commit
  28. 23 Jul, 2019 1 commit
  29. 21 Jun, 2019 2 commits
  30. 19 Jun, 2019 1 commit
    • Toby Boyd's avatar
      Add XLA to transformer (#7048) · 269581dc
      Toby Boyd authored
      
      
      * set default steps to 300K.
      
      * Log flags to perfzero.
      
      * Add XLA support to transformer
      
      - Moved config logic to keras_utils
      - Added enable_xla flag to _performance flags
      - Did not refactor enable_xla flag from keras resnet due to
        reliance on calling FLAGs in estimator keras and that is
        a needed refactor for another time.
      
      * fix g3 lint complaint.
      
      * Refactor set config into keras_utils.
      
      * Move flags out of main.
      
      * pipe through enable_xla
      
      * Update official/transformer/v2/misc.py
      Co-Authored-By: default avatarReed <reedwm@google.com>
      269581dc
  31. 06 Jun, 2019 1 commit
  32. 18 May, 2019 1 commit
  33. 15 May, 2019 1 commit
  34. 11 May, 2019 1 commit
  35. 01 May, 2019 1 commit
    • Reed's avatar
      Add --fp16_implementation option. (#6703) · b691578c
      Reed authored
      This options allows the new tf.train.experimental.enable_mixed_precision_graph_rewrite() function to be used for fp16, instead of manual casts.
      b691578c