"examples/git@developer.sourcefind.cn:orangecat/ollama.git" did not exist on "8f2df948abc510d22d75fb712fcfee776c78da1c"
Commit fa872c51 authored by Dan Kondratyuk's avatar Dan Kondratyuk Committed by A. Unique TensorFlower
Browse files

Update MoViNet Colab tutorial and fix errors.

PiperOrigin-RevId: 434474245
parent 0c5effcd
# Copyright 2022 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
...@@ -51,6 +51,8 @@ python3 export_saved_model.py \ ...@@ -51,6 +51,8 @@ python3 export_saved_model.py \
To use an exported saved_model, refer to export_saved_model_test.py. To use an exported saved_model, refer to export_saved_model_test.py.
""" """
from typing import Optional, Tuple
from absl import app from absl import app
from absl import flags from absl import flags
import tensorflow as tf import tensorflow as tf
...@@ -113,62 +115,50 @@ flags.DEFINE_string( ...@@ -113,62 +115,50 @@ flags.DEFINE_string(
FLAGS = flags.FLAGS FLAGS = flags.FLAGS
def main(_) -> None: def export_saved_model(
input_specs = tf.keras.layers.InputSpec(shape=[ model: tf.keras.Model,
FLAGS.batch_size, input_shape: Tuple[int, int, int, int, int],
FLAGS.num_frames, export_path: str = '/tmp/movinet/',
FLAGS.image_size, causal: bool = False,
FLAGS.image_size, bundle_input_init_states_fn: bool = True,
3, checkpoint_path: Optional[str] = None) -> None:
]) """Exports a MoViNet model to a saved model.
Args:
model: the tf.keras.Model to export.
input_shape: The 5D spatiotemporal input shape of size
[batch_size, num_frames, image_height, image_width, num_channels].
Set the field or a shape position in the field to None for dynamic input.
export_path: Export path to save the saved_model file.
causal: Run the model in causal mode.
bundle_input_init_states_fn: Add init_states as a function signature to the
saved model. This is not necessary if the input shape is static (e.g.,
for TF Lite).
checkpoint_path: Checkpoint path to load. Leave blank to keep the model's
initialization.
"""
# Use dimensions of 1 except the channels to export faster, # Use dimensions of 1 except the channels to export faster,
# since we only really need the last dimension to build and get the output # since we only really need the last dimension to build and get the output
# states. These dimensions can be set to `None` once the model is built. # states. These dimensions can be set to `None` once the model is built.
input_shape = [1 if s is None else s for s in input_specs.shape] input_shape_concrete = [1 if s is None else s for s in input_shape]
model.build(input_shape_concrete)
# Override swish activation implementation to remove custom gradients
activation = FLAGS.activation
if activation == 'swish':
activation = 'simple_swish'
classifier_activation = FLAGS.classifier_activation
if classifier_activation == 'swish':
classifier_activation = 'simple_swish'
backbone = movinet.Movinet(
model_id=FLAGS.model_id,
causal=FLAGS.causal,
use_positional_encoding=FLAGS.use_positional_encoding,
conv_type=FLAGS.conv_type,
se_type=FLAGS.se_type,
input_specs=input_specs,
activation=activation,
gating_activation=FLAGS.gating_activation,
use_sync_bn=False,
use_external_states=FLAGS.causal)
model = movinet_model.MovinetClassifier(
backbone,
num_classes=FLAGS.num_classes,
output_states=FLAGS.causal,
input_specs=dict(image=input_specs),
activation=classifier_activation)
model.build(input_shape)
# Compile model to generate some internal Keras variables. # Compile model to generate some internal Keras variables.
model.compile() model.compile()
if FLAGS.checkpoint_path: if checkpoint_path:
checkpoint = tf.train.Checkpoint(model=model) checkpoint = tf.train.Checkpoint(model=model)
status = checkpoint.restore(FLAGS.checkpoint_path) status = checkpoint.restore(checkpoint_path)
status.assert_existing_objects_matched() status.assert_existing_objects_matched()
if FLAGS.causal: if causal:
# Call the model once to get the output states. Call again with `states` # Call the model once to get the output states. Call again with `states`
# input to ensure that the inputs with the `states` argument is built # input to ensure that the inputs with the `states` argument is built
# with the full output state shapes. # with the full output state shapes.
input_image = tf.ones(input_shape) input_image = tf.ones(input_shape_concrete)
_, states = model({**model.init_states(input_shape), 'image': input_image}) _, states = model({
**model.init_states(input_shape_concrete), 'image': input_image})
_ = model({**states, 'image': input_image}) _ = model({**states, 'image': input_image})
# Create a function to explicitly set the names of the outputs # Create a function to explicitly set the names of the outputs
...@@ -179,10 +169,10 @@ def main(_) -> None: ...@@ -179,10 +169,10 @@ def main(_) -> None:
specs = { specs = {
name: tf.TensorSpec(spec.shape, name=name, dtype=spec.dtype) name: tf.TensorSpec(spec.shape, name=name, dtype=spec.dtype)
for name, spec in model.initial_state_specs( for name, spec in model.initial_state_specs(
input_specs.shape).items() input_shape).items()
} }
specs['image'] = tf.TensorSpec( specs['image'] = tf.TensorSpec(
input_specs.shape, dtype=model.dtype, name='image') input_shape, dtype=model.dtype, name='image')
predict_fn = tf.function(predict, jit_compile=True) predict_fn = tf.function(predict, jit_compile=True)
predict_fn = predict_fn.get_concrete_function(specs) predict_fn = predict_fn.get_concrete_function(specs)
...@@ -191,17 +181,118 @@ def main(_) -> None: ...@@ -191,17 +181,118 @@ def main(_) -> None:
init_states_fn = init_states_fn.get_concrete_function( init_states_fn = init_states_fn.get_concrete_function(
tf.TensorSpec([5], dtype=tf.int32)) tf.TensorSpec([5], dtype=tf.int32))
if FLAGS.bundle_input_init_states_fn: if bundle_input_init_states_fn:
signatures = {'call': predict_fn, 'init_states': init_states_fn} signatures = {'call': predict_fn, 'init_states': init_states_fn}
else: else:
signatures = predict_fn signatures = predict_fn
tf.keras.models.save_model( tf.keras.models.save_model(
model, FLAGS.export_path, signatures=signatures) model, export_path, signatures=signatures)
else: else:
_ = model(tf.ones(input_shape)) _ = model(tf.ones(input_shape_concrete))
tf.keras.models.save_model(model, FLAGS.export_path) tf.keras.models.save_model(model, export_path)
def build_and_export_saved_model(
export_path: str = '/tmp/movinet/',
model_id: str = 'a0',
causal: bool = False,
conv_type: str = '3d',
se_type: str = '3d',
activation: str = 'swish',
classifier_activation: str = 'swish',
gating_activation: str = 'sigmoid',
use_positional_encoding: bool = False,
num_classes: int = 600,
input_shape: Optional[Tuple[int, int, int, int, int]] = None,
bundle_input_init_states_fn: bool = True,
checkpoint_path: Optional[str] = None) -> None:
"""Builds and exports a MoViNet model to a saved model.
Args:
export_path: Export path to save the saved_model file.
model_id: MoViNet model name.
causal: Run the model in causal mode.
conv_type: 3d, 2plus1d, or 3d_2plus1d. 3d configures the network
to use the default 3D convolution. 2plus1d uses (2+1)D convolution
with Conv2D operations and 2D reshaping (e.g., a 5x3x3 kernel becomes
3x3 followed by 5x1 conv). 3d_2plus1d uses (2+1)D convolution with
Conv3D and no 2D reshaping (e.g., a 5x3x3 kernel becomes 1x3x3
followed by 5x1x1 conv).
se_type:
3d, 2d, or 2plus3d. 3d uses the default 3D spatiotemporal global average
pooling for squeeze excitation. 2d uses 2D spatial global average pooling
on each frame. 2plus3d concatenates both 3D and 2D global average
pooling.
activation: The main activation to use across layers.
classifier_activation: The classifier activation to use.
gating_activation: The gating activation to use in squeeze-excitation
layers.
use_positional_encoding: Whether to use positional encoding (only applied
when causal=True).
num_classes: The number of classes for prediction.
input_shape: The 5D spatiotemporal input shape of size
[batch_size, num_frames, image_height, image_width, num_channels].
Set the field or a shape position in the field to None for dynamic input.
bundle_input_init_states_fn: Add init_states as a function signature to the
saved model. This is not necessary if the input shape is static (e.g.,
for TF Lite).
checkpoint_path: Checkpoint path to load. Leave blank for default
initialization.
"""
input_specs = tf.keras.layers.InputSpec(shape=input_shape)
# Override swish activation implementation to remove custom gradients
if activation == 'swish':
activation = 'simple_swish'
if classifier_activation == 'swish':
classifier_activation = 'simple_swish'
backbone = movinet.Movinet(
model_id=model_id,
causal=causal,
use_positional_encoding=use_positional_encoding,
conv_type=conv_type,
se_type=se_type,
input_specs=input_specs,
activation=activation,
gating_activation=gating_activation,
use_sync_bn=False,
use_external_states=causal)
model = movinet_model.MovinetClassifier(
backbone,
num_classes=num_classes,
output_states=causal,
input_specs=dict(image=input_specs),
activation=classifier_activation)
export_saved_model(
model=model,
input_shape=input_shape,
export_path=export_path,
causal=causal,
bundle_input_init_states_fn=bundle_input_init_states_fn,
checkpoint_path=checkpoint_path)
def main(_) -> None:
input_shape = (
FLAGS.batch_size, FLAGS.num_frames, FLAGS.image_size, FLAGS.image_size, 3)
build_and_export_saved_model(
export_path=FLAGS.export_path,
model_id=FLAGS.model_id,
causal=FLAGS.causal,
conv_type=FLAGS.conv_type,
se_type=FLAGS.se_type,
activation=FLAGS.activation,
classifier_activation=FLAGS.classifier_activation,
gating_activation=FLAGS.gating_activation,
use_positional_encoding=FLAGS.use_positional_encoding,
num_classes=FLAGS.num_classes,
input_shape=input_shape,
bundle_input_init_states_fn=FLAGS.bundle_input_init_states_fn,
checkpoint_path=FLAGS.checkpoint_path)
print(' ----- Done. Saved Model is saved at {}'.format(FLAGS.export_path)) print(' ----- Done. Saved Model is saved at {}'.format(FLAGS.export_path))
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment