Unverified Commit f673f7a8 authored by Hongkun Yu's avatar Hongkun Yu Committed by GitHub
Browse files

remove research/resnet (#8093)

parent 3e12ad2b
package(default_visibility = [":internal"])
licenses(["notice"]) # Apache 2.0
exports_files(["LICENSE"])
package_group(
name = "internal",
packages = [
"//resnet/...",
],
)
filegroup(
name = "py_srcs",
data = glob([
"**/*.py",
]),
)
py_library(
name = "resnet_model",
srcs = ["resnet_model.py"],
)
py_binary(
name = "resnet_main",
srcs = [
"resnet_main.py",
],
deps = [
":cifar_input",
":resnet_model",
],
)
py_library(
name = "cifar_input",
srcs = ["cifar_input.py"],
)
<font size=4><b>Reproduced ResNet on CIFAR-10 and CIFAR-100 dataset.</b></font>
# Deprecated
This code is not actively maintained. Please use the
[offical ResNet](https://github.com/tensorflow/models/tree/master/official/vision/image_classification) implementation
instead.
Xin Pan
<b>Dataset:</b>
https://www.cs.toronto.edu/~kriz/cifar.html
<b>Related papers:</b>
Identity Mappings in Deep Residual Networks
https://arxiv.org/pdf/1603.05027v2.pdf
Deep Residual Learning for Image Recognition
https://arxiv.org/pdf/1512.03385v1.pdf
Wide Residual Networks
https://arxiv.org/pdf/1605.07146v1.pdf
<b>Settings:</b>
* Random split 50k training set into 45k/5k train/eval split.
* Pad to 36x36 and random crop. Horizontal flip. Per-image whitening.
* Momentum optimizer 0.9.
* Learning rate schedule: 0.1 (40k), 0.01 (60k), 0.001 (>60k).
* L2 weight decay: 0.002.
* Batch size: 128. (28-10 wide and 1001 layer bottleneck use 64)
<b>Results:</b>
![Precisions](g3doc/cifar_resnet.gif)
![Precisions Legends](g3doc/cifar_resnet_legends.gif)
CIFAR-10 Model|Best Precision|Steps
--------------|--------------|------
32 layer|92.5%|~80k
110 layer|93.6%|~80k
164 layer bottleneck|94.5%|~80k
1001 layer bottleneck|94.9%|~80k
28-10 wide|95%|~90k
CIFAR-100 Model|Best Precision|Steps
---------------|--------------|-----
32 layer|68.1%|~45k
110 layer|71.3%|~60k
164 layer bottleneck|75.7%|~50k
1001 layer bottleneck|78.2%|~70k
28-10 wide|78.3%|~70k
<b>Prerequisite:</b>
1. Install TensorFlow, Bazel.
2. Download CIFAR-10/CIFAR-100 dataset.
```shell
curl -o cifar-10-binary.tar.gz https://www.cs.toronto.edu/~kriz/cifar-10-binary.tar.gz
curl -o cifar-100-binary.tar.gz https://www.cs.toronto.edu/~kriz/cifar-100-binary.tar.gz
```
<b>How to run:</b>
```shell
# cd to the models repository and run with bash. Expected command output shown.
# The directory should contain an empty WORKSPACE file, the resnet code, and the cifar10 dataset.
# Note: The user can split 5k from train set for eval set.
$ ls -R
.:
cifar10 resnet WORKSPACE
./cifar10:
data_batch_1.bin data_batch_2.bin data_batch_3.bin data_batch_4.bin
data_batch_5.bin test_batch.bin
./resnet:
BUILD cifar_input.py g3doc README.md resnet_main.py resnet_model.py
# Build everything for GPU.
$ bazel build -c opt --config=cuda resnet/...
# Train the model.
$ bazel-bin/resnet/resnet_main --train_data_path=cifar10/data_batch* \
--log_root=/tmp/resnet_model \
--train_dir=/tmp/resnet_model/train \
--dataset='cifar10' \
--num_gpus=1
# While the model is training, you can also check on its progress using tensorboard:
$ tensorboard --logdir=/tmp/resnet_model
# Evaluate the model.
# Avoid running on the same GPU as the training job at the same time,
# otherwise, you might run out of memory.
$ bazel-bin/resnet/resnet_main --eval_data_path=cifar10/test_batch.bin \
--log_root=/tmp/resnet_model \
--eval_dir=/tmp/resnet_model/test \
--mode=eval \
--dataset='cifar10' \
--num_gpus=0
```
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""CIFAR dataset input module.
"""
import tensorflow as tf
def build_input(dataset, data_path, batch_size, mode):
"""Build CIFAR image and labels.
Args:
dataset: Either 'cifar10' or 'cifar100'.
data_path: Filename for data.
batch_size: Input batch size.
mode: Either 'train' or 'eval'.
Returns:
images: Batches of images. [batch_size, image_size, image_size, 3]
labels: Batches of labels. [batch_size, num_classes]
Raises:
ValueError: when the specified dataset is not supported.
"""
image_size = 32
if dataset == 'cifar10':
label_bytes = 1
label_offset = 0
num_classes = 10
elif dataset == 'cifar100':
label_bytes = 1
label_offset = 1
num_classes = 100
else:
raise ValueError('Not supported dataset %s', dataset)
depth = 3
image_bytes = image_size * image_size * depth
record_bytes = label_bytes + label_offset + image_bytes
data_files = tf.gfile.Glob(data_path)
file_queue = tf.train.string_input_producer(data_files, shuffle=True)
# Read examples from files in the filename queue.
reader = tf.FixedLengthRecordReader(record_bytes=record_bytes)
_, value = reader.read(file_queue)
# Convert these examples to dense labels and processed images.
record = tf.reshape(tf.decode_raw(value, tf.uint8), [record_bytes])
label = tf.cast(tf.slice(record, [label_offset], [label_bytes]), tf.int32)
# Convert from string to [depth * height * width] to [depth, height, width].
depth_major = tf.reshape(tf.slice(record, [label_offset + label_bytes], [image_bytes]),
[depth, image_size, image_size])
# Convert from [depth, height, width] to [height, width, depth].
image = tf.cast(tf.transpose(depth_major, [1, 2, 0]), tf.float32)
if mode == 'train':
image = tf.image.resize_image_with_crop_or_pad(
image, image_size+4, image_size+4)
image = tf.random_crop(image, [image_size, image_size, 3])
image = tf.image.random_flip_left_right(image)
# Brightness/saturation/constrast provides small gains .2%~.5% on cifar.
# image = tf.image.random_brightness(image, max_delta=63. / 255.)
# image = tf.image.random_saturation(image, lower=0.5, upper=1.5)
# image = tf.image.random_contrast(image, lower=0.2, upper=1.8)
image = tf.image.per_image_standardization(image)
example_queue = tf.RandomShuffleQueue(
capacity=16 * batch_size,
min_after_dequeue=8 * batch_size,
dtypes=[tf.float32, tf.int32],
shapes=[[image_size, image_size, depth], [1]])
num_threads = 16
else:
image = tf.image.resize_image_with_crop_or_pad(
image, image_size, image_size)
image = tf.image.per_image_standardization(image)
example_queue = tf.FIFOQueue(
3 * batch_size,
dtypes=[tf.float32, tf.int32],
shapes=[[image_size, image_size, depth], [1]])
num_threads = 1
example_enqueue_op = example_queue.enqueue([image, label])
tf.train.add_queue_runner(tf.train.queue_runner.QueueRunner(
example_queue, [example_enqueue_op] * num_threads))
# Read 'batch' labels + images from the example queue.
images, labels = example_queue.dequeue_many(batch_size)
labels = tf.reshape(labels, [batch_size, 1])
indices = tf.reshape(tf.range(0, batch_size, 1), [batch_size, 1])
labels = tf.sparse_to_dense(
tf.concat(values=[indices, labels], axis=1),
[batch_size, num_classes], 1.0, 0.0)
assert len(images.get_shape()) == 4
assert images.get_shape()[0] == batch_size
assert images.get_shape()[-1] == 3
assert len(labels.get_shape()) == 2
assert labels.get_shape()[0] == batch_size
assert labels.get_shape()[1] == num_classes
# Display the training images in the visualizer.
tf.summary.image('images', images)
return images, labels
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""ResNet Train/Eval module.
"""
import time
import six
import sys
import cifar_input
import numpy as np
import resnet_model
import tensorflow as tf
FLAGS = tf.app.flags.FLAGS
tf.app.flags.DEFINE_string('dataset', 'cifar10', 'cifar10 or cifar100.')
tf.app.flags.DEFINE_string('mode', 'train', 'train or eval.')
tf.app.flags.DEFINE_string('train_data_path', '',
'Filepattern for training data.')
tf.app.flags.DEFINE_string('eval_data_path', '',
'Filepattern for eval data')
tf.app.flags.DEFINE_integer('image_size', 32, 'Image side length.')
tf.app.flags.DEFINE_string('train_dir', '',
'Directory to keep training outputs.')
tf.app.flags.DEFINE_string('eval_dir', '',
'Directory to keep eval outputs.')
tf.app.flags.DEFINE_integer('eval_batch_count', 50,
'Number of batches to eval.')
tf.app.flags.DEFINE_bool('eval_once', False,
'Whether evaluate the model only once.')
tf.app.flags.DEFINE_string('log_root', '',
'Directory to keep the checkpoints. Should be a '
'parent directory of FLAGS.train_dir/eval_dir.')
tf.app.flags.DEFINE_integer('num_gpus', 0,
'Number of gpus used for training. (0 or 1)')
def train(hps):
"""Training loop."""
images, labels = cifar_input.build_input(
FLAGS.dataset, FLAGS.train_data_path, hps.batch_size, FLAGS.mode)
model = resnet_model.ResNet(hps, images, labels, FLAGS.mode)
model.build_graph()
param_stats = tf.contrib.tfprof.model_analyzer.print_model_analysis(
tf.get_default_graph(),
tfprof_options=tf.contrib.tfprof.model_analyzer.
TRAINABLE_VARS_PARAMS_STAT_OPTIONS)
sys.stdout.write('total_params: %d\n' % param_stats.total_parameters)
tf.contrib.tfprof.model_analyzer.print_model_analysis(
tf.get_default_graph(),
tfprof_options=tf.contrib.tfprof.model_analyzer.FLOAT_OPS_OPTIONS)
truth = tf.argmax(model.labels, axis=1)
predictions = tf.argmax(model.predictions, axis=1)
precision = tf.reduce_mean(tf.to_float(tf.equal(predictions, truth)))
summary_hook = tf.train.SummarySaverHook(
save_steps=100,
output_dir=FLAGS.train_dir,
summary_op=tf.summary.merge([model.summaries,
tf.summary.scalar('Precision', precision)]))
logging_hook = tf.train.LoggingTensorHook(
tensors={'step': model.global_step,
'loss': model.cost,
'precision': precision},
every_n_iter=100)
class _LearningRateSetterHook(tf.train.SessionRunHook):
"""Sets learning_rate based on global step."""
def begin(self):
self._lrn_rate = 0.1
def before_run(self, run_context):
return tf.train.SessionRunArgs(
model.global_step, # Asks for global step value.
feed_dict={model.lrn_rate: self._lrn_rate}) # Sets learning rate
def after_run(self, run_context, run_values):
train_step = run_values.results
if train_step < 40000:
self._lrn_rate = 0.1
elif train_step < 60000:
self._lrn_rate = 0.01
elif train_step < 80000:
self._lrn_rate = 0.001
else:
self._lrn_rate = 0.0001
with tf.train.MonitoredTrainingSession(
checkpoint_dir=FLAGS.log_root,
hooks=[logging_hook, _LearningRateSetterHook()],
chief_only_hooks=[summary_hook],
# Since we provide a SummarySaverHook, we need to disable default
# SummarySaverHook. To do that we set save_summaries_steps to 0.
save_summaries_steps=0,
config=tf.ConfigProto(allow_soft_placement=True)) as mon_sess:
while not mon_sess.should_stop():
mon_sess.run(model.train_op)
def evaluate(hps):
"""Eval loop."""
images, labels = cifar_input.build_input(
FLAGS.dataset, FLAGS.eval_data_path, hps.batch_size, FLAGS.mode)
model = resnet_model.ResNet(hps, images, labels, FLAGS.mode)
model.build_graph()
saver = tf.train.Saver()
summary_writer = tf.summary.FileWriter(FLAGS.eval_dir)
sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True))
tf.train.start_queue_runners(sess)
best_precision = 0.0
while True:
try:
ckpt_state = tf.train.get_checkpoint_state(FLAGS.log_root)
except tf.errors.OutOfRangeError as e:
tf.logging.error('Cannot restore checkpoint: %s', e)
continue
if not (ckpt_state and ckpt_state.model_checkpoint_path):
tf.logging.info('No model to eval yet at %s', FLAGS.log_root)
continue
tf.logging.info('Loading checkpoint %s', ckpt_state.model_checkpoint_path)
saver.restore(sess, ckpt_state.model_checkpoint_path)
total_prediction, correct_prediction = 0, 0
for _ in six.moves.range(FLAGS.eval_batch_count):
(summaries, loss, predictions, truth, train_step) = sess.run(
[model.summaries, model.cost, model.predictions,
model.labels, model.global_step])
truth = np.argmax(truth, axis=1)
predictions = np.argmax(predictions, axis=1)
correct_prediction += np.sum(truth == predictions)
total_prediction += predictions.shape[0]
precision = 1.0 * correct_prediction / total_prediction
best_precision = max(precision, best_precision)
precision_summ = tf.Summary()
precision_summ.value.add(
tag='Precision', simple_value=precision)
summary_writer.add_summary(precision_summ, train_step)
best_precision_summ = tf.Summary()
best_precision_summ.value.add(
tag='Best Precision', simple_value=best_precision)
summary_writer.add_summary(best_precision_summ, train_step)
summary_writer.add_summary(summaries, train_step)
tf.logging.info('loss: %.3f, precision: %.3f, best precision: %.3f' %
(loss, precision, best_precision))
summary_writer.flush()
if FLAGS.eval_once:
break
time.sleep(60)
def main(_):
if FLAGS.num_gpus == 0:
dev = '/cpu:0'
elif FLAGS.num_gpus == 1:
dev = '/gpu:0'
else:
raise ValueError('Only support 0 or 1 gpu.')
if FLAGS.mode == 'train':
batch_size = 128
elif FLAGS.mode == 'eval':
batch_size = 100
if FLAGS.dataset == 'cifar10':
num_classes = 10
elif FLAGS.dataset == 'cifar100':
num_classes = 100
hps = resnet_model.HParams(batch_size=batch_size,
num_classes=num_classes,
min_lrn_rate=0.0001,
lrn_rate=0.1,
num_residual_units=5,
use_bottleneck=False,
weight_decay_rate=0.0002,
relu_leakiness=0.1,
optimizer='mom')
with tf.device(dev):
if FLAGS.mode == 'train':
train(hps)
elif FLAGS.mode == 'eval':
evaluate(hps)
if __name__ == '__main__':
tf.logging.set_verbosity(tf.logging.INFO)
tf.app.run()
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""ResNet model.
Related papers:
https://arxiv.org/pdf/1603.05027v2.pdf
https://arxiv.org/pdf/1512.03385v1.pdf
https://arxiv.org/pdf/1605.07146v1.pdf
"""
from collections import namedtuple
import numpy as np
import tensorflow as tf
import six
from tensorflow.python.training import moving_averages
HParams = namedtuple('HParams',
'batch_size, num_classes, min_lrn_rate, lrn_rate, '
'num_residual_units, use_bottleneck, weight_decay_rate, '
'relu_leakiness, optimizer')
tf.logging.warning("models/research/resnet is deprecated. "
"Please use models/official/resnet instead.")
class ResNet(object):
"""ResNet model."""
def __init__(self, hps, images, labels, mode):
"""ResNet constructor.
Args:
hps: Hyperparameters.
images: Batches of images. [batch_size, image_size, image_size, 3]
labels: Batches of labels. [batch_size, num_classes]
mode: One of 'train' and 'eval'.
"""
self.hps = hps
self._images = images
self.labels = labels
self.mode = mode
self._extra_train_ops = []
def build_graph(self):
"""Build a whole graph for the model."""
self.global_step = tf.train.get_or_create_global_step()
self._build_model()
if self.mode == 'train':
self._build_train_op()
self.summaries = tf.summary.merge_all()
def _stride_arr(self, stride):
"""Map a stride scalar to the stride array for tf.nn.conv2d."""
return [1, stride, stride, 1]
def _build_model(self):
"""Build the core model within the graph."""
with tf.variable_scope('init'):
x = self._images
x = self._conv('init_conv', x, 3, 3, 16, self._stride_arr(1))
strides = [1, 2, 2]
activate_before_residual = [True, False, False]
if self.hps.use_bottleneck:
res_func = self._bottleneck_residual
filters = [16, 64, 128, 256]
else:
res_func = self._residual
filters = [16, 16, 32, 64]
# Uncomment the following codes to use w28-10 wide residual network.
# It is more memory efficient than very deep residual network and has
# comparably good performance.
# https://arxiv.org/pdf/1605.07146v1.pdf
# filters = [16, 160, 320, 640]
# Update hps.num_residual_units to 4
with tf.variable_scope('unit_1_0'):
x = res_func(x, filters[0], filters[1], self._stride_arr(strides[0]),
activate_before_residual[0])
for i in six.moves.range(1, self.hps.num_residual_units):
with tf.variable_scope('unit_1_%d' % i):
x = res_func(x, filters[1], filters[1], self._stride_arr(1), False)
with tf.variable_scope('unit_2_0'):
x = res_func(x, filters[1], filters[2], self._stride_arr(strides[1]),
activate_before_residual[1])
for i in six.moves.range(1, self.hps.num_residual_units):
with tf.variable_scope('unit_2_%d' % i):
x = res_func(x, filters[2], filters[2], self._stride_arr(1), False)
with tf.variable_scope('unit_3_0'):
x = res_func(x, filters[2], filters[3], self._stride_arr(strides[2]),
activate_before_residual[2])
for i in six.moves.range(1, self.hps.num_residual_units):
with tf.variable_scope('unit_3_%d' % i):
x = res_func(x, filters[3], filters[3], self._stride_arr(1), False)
with tf.variable_scope('unit_last'):
x = self._batch_norm('final_bn', x)
x = self._relu(x, self.hps.relu_leakiness)
x = self._global_avg_pool(x)
with tf.variable_scope('logit'):
logits = self._fully_connected(x, self.hps.num_classes)
self.predictions = tf.nn.softmax(logits)
with tf.variable_scope('costs'):
xent = tf.nn.softmax_cross_entropy_with_logits(
logits=logits, labels=self.labels)
self.cost = tf.reduce_mean(xent, name='xent')
self.cost += self._decay()
tf.summary.scalar('cost', self.cost)
def _build_train_op(self):
"""Build training specific ops for the graph."""
self.lrn_rate = tf.constant(self.hps.lrn_rate, tf.float32)
tf.summary.scalar('learning_rate', self.lrn_rate)
trainable_variables = tf.trainable_variables()
grads = tf.gradients(self.cost, trainable_variables)
if self.hps.optimizer == 'sgd':
optimizer = tf.train.GradientDescentOptimizer(self.lrn_rate)
elif self.hps.optimizer == 'mom':
optimizer = tf.train.MomentumOptimizer(self.lrn_rate, 0.9)
apply_op = optimizer.apply_gradients(
zip(grads, trainable_variables),
global_step=self.global_step, name='train_step')
train_ops = [apply_op] + self._extra_train_ops
self.train_op = tf.group(*train_ops)
# TODO(xpan): Consider batch_norm in contrib/layers/python/layers/layers.py
def _batch_norm(self, name, x):
"""Batch normalization."""
with tf.variable_scope(name):
params_shape = [x.get_shape()[-1]]
beta = tf.get_variable(
'beta', params_shape, tf.float32,
initializer=tf.constant_initializer(0.0, tf.float32))
gamma = tf.get_variable(
'gamma', params_shape, tf.float32,
initializer=tf.constant_initializer(1.0, tf.float32))
if self.mode == 'train':
mean, variance = tf.nn.moments(x, [0, 1, 2], name='moments')
moving_mean = tf.get_variable(
'moving_mean', params_shape, tf.float32,
initializer=tf.constant_initializer(0.0, tf.float32),
trainable=False)
moving_variance = tf.get_variable(
'moving_variance', params_shape, tf.float32,
initializer=tf.constant_initializer(1.0, tf.float32),
trainable=False)
self._extra_train_ops.append(moving_averages.assign_moving_average(
moving_mean, mean, 0.9))
self._extra_train_ops.append(moving_averages.assign_moving_average(
moving_variance, variance, 0.9))
else:
mean = tf.get_variable(
'moving_mean', params_shape, tf.float32,
initializer=tf.constant_initializer(0.0, tf.float32),
trainable=False)
variance = tf.get_variable(
'moving_variance', params_shape, tf.float32,
initializer=tf.constant_initializer(1.0, tf.float32),
trainable=False)
tf.summary.histogram(mean.op.name, mean)
tf.summary.histogram(variance.op.name, variance)
# epsilon used to be 1e-5. Maybe 0.001 solves NaN problem in deeper net.
y = tf.nn.batch_normalization(
x, mean, variance, beta, gamma, 0.001)
y.set_shape(x.get_shape())
return y
def _residual(self, x, in_filter, out_filter, stride,
activate_before_residual=False):
"""Residual unit with 2 sub layers."""
if activate_before_residual:
with tf.variable_scope('shared_activation'):
x = self._batch_norm('init_bn', x)
x = self._relu(x, self.hps.relu_leakiness)
orig_x = x
else:
with tf.variable_scope('residual_only_activation'):
orig_x = x
x = self._batch_norm('init_bn', x)
x = self._relu(x, self.hps.relu_leakiness)
with tf.variable_scope('sub1'):
x = self._conv('conv1', x, 3, in_filter, out_filter, stride)
with tf.variable_scope('sub2'):
x = self._batch_norm('bn2', x)
x = self._relu(x, self.hps.relu_leakiness)
x = self._conv('conv2', x, 3, out_filter, out_filter, [1, 1, 1, 1])
with tf.variable_scope('sub_add'):
if in_filter != out_filter:
orig_x = tf.nn.avg_pool(orig_x, stride, stride, 'VALID')
orig_x = tf.pad(
orig_x, [[0, 0], [0, 0], [0, 0],
[(out_filter-in_filter)//2, (out_filter-in_filter)//2]])
x += orig_x
tf.logging.debug('image after unit %s', x.get_shape())
return x
def _bottleneck_residual(self, x, in_filter, out_filter, stride,
activate_before_residual=False):
"""Bottleneck residual unit with 3 sub layers."""
if activate_before_residual:
with tf.variable_scope('common_bn_relu'):
x = self._batch_norm('init_bn', x)
x = self._relu(x, self.hps.relu_leakiness)
orig_x = x
else:
with tf.variable_scope('residual_bn_relu'):
orig_x = x
x = self._batch_norm('init_bn', x)
x = self._relu(x, self.hps.relu_leakiness)
with tf.variable_scope('sub1'):
x = self._conv('conv1', x, 1, in_filter, out_filter/4, stride)
with tf.variable_scope('sub2'):
x = self._batch_norm('bn2', x)
x = self._relu(x, self.hps.relu_leakiness)
x = self._conv('conv2', x, 3, out_filter/4, out_filter/4, [1, 1, 1, 1])
with tf.variable_scope('sub3'):
x = self._batch_norm('bn3', x)
x = self._relu(x, self.hps.relu_leakiness)
x = self._conv('conv3', x, 1, out_filter/4, out_filter, [1, 1, 1, 1])
with tf.variable_scope('sub_add'):
if in_filter != out_filter:
orig_x = self._conv('project', orig_x, 1, in_filter, out_filter, stride)
x += orig_x
tf.logging.info('image after unit %s', x.get_shape())
return x
def _decay(self):
"""L2 weight decay loss."""
costs = []
for var in tf.trainable_variables():
if var.op.name.find(r'DW') > 0:
costs.append(tf.nn.l2_loss(var))
# tf.summary.histogram(var.op.name, var)
return tf.multiply(self.hps.weight_decay_rate, tf.add_n(costs))
def _conv(self, name, x, filter_size, in_filters, out_filters, strides):
"""Convolution."""
with tf.variable_scope(name):
n = filter_size * filter_size * out_filters
kernel = tf.get_variable(
'DW', [filter_size, filter_size, in_filters, out_filters],
tf.float32, initializer=tf.random_normal_initializer(
stddev=np.sqrt(2.0/n)))
return tf.nn.conv2d(x, kernel, strides, padding='SAME')
def _relu(self, x, leakiness=0.0):
"""Relu, with optional leaky support."""
return tf.where(tf.less(x, 0.0), leakiness * x, x, name='leaky_relu')
def _fully_connected(self, x, out_dim):
"""FullyConnected layer for final output."""
x = tf.reshape(x, [self.hps.batch_size, -1])
w = tf.get_variable(
'DW', [x.get_shape()[1], out_dim],
initializer=tf.uniform_unit_scaling_initializer(factor=1.0))
b = tf.get_variable('biases', [out_dim],
initializer=tf.constant_initializer())
return tf.nn.xw_plus_b(x, w, b)
def _global_avg_pool(self, x):
assert x.get_shape().ndims == 4
return tf.reduce_mean(x, [1, 2])
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment