Commit f4d88a69 authored by A. Unique TensorFlower's avatar A. Unique TensorFlower
Browse files

Fix file not found error in Deep Mask Head RCNN unit tests

PiperOrigin-RevId: 473067046
parent 92484dfe
# Copyright 2022 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for Mask R-CNN variant with support for deep mask heads."""
import orbit
import tensorflow as tf
from official import vision # pylint: disable=unused-import
from official.core import exp_factory
from official.modeling import optimization
from official.projects.deepmac_maskrcnn.tasks import deep_mask_head_rcnn
class DeepMaskHeadRCNNTaskTest(tf.test.TestCase):
def _edit_config_for_testing(self, config):
# modify config to suit local testing
config.trainer.steps_per_loop = 1
config.task.train_data.global_batch_size = 2
config.task.model.backbone.resnet.model_id = 18
config.task.model.decoder.fpn.num_filters = 32
config.task.model.detection_generator.pre_nms_top_k = 500
config.task.model.detection_head.fc_dims = 128
if config.task.model.include_mask:
config.task.model.mask_sampler.num_sampled_masks = 10
config.task.model.mask_head.num_convs = 1
config.task.model.roi_generator.num_proposals = 100
config.task.model.roi_generator.pre_nms_top_k = 150
config.task.model.roi_generator.test_pre_nms_top_k = 150
config.task.model.roi_generator.test_num_proposals = 100
config.task.model.rpn_head.num_filters = 32
config.task.model.roi_sampler.num_sampled_rois = 200
config.task.model.input_size = [128, 128, 3]
config.trainer.train_steps = 2
config.task.train_data.shuffle_buffer_size = 2
config.task.train_data.input_path = "/readahead/200M/placer/prod/home/tensorflow-performance-data/datasets/coco/train-00000-of-00256.tfrecord"
config.task.validation_data.global_batch_size = 2
config.task.validation_data.input_path = "/readahead/200M/placer/prod/home/tensorflow-performance-data/datasets/coco/val-00000-of-00032.tfrecord"
def _build_deep_mask_head_rcnn_from_config(self, config, is_training):
task = deep_mask_head_rcnn.DeepMaskHeadRCNNTask(config.task)
model = task.build_model()
metrics = task.build_metrics(training=is_training)
strategy = tf.distribute.get_strategy()
data_config = config.task.train_data if is_training else config.task.validation_data
dataset = orbit.utils.make_distributed_dataset(strategy, task.build_inputs,
data_config)
iterator = iter(dataset)
opt_factory = optimization.OptimizerFactory(config.trainer.optimizer_config)
optimizer = opt_factory.build_optimizer(opt_factory.build_learning_rate())
return task, iterator, model, optimizer, metrics
def test_freeze_backbone_number_of_trainable_weights(self):
config = exp_factory.get_exp_config("deep_mask_head_rcnn_resnetfpn_coco")
self._edit_config_for_testing(config)
# Get the number of weights from a regular model
(task, iterator, model,
optimizer, metrics) = self._build_deep_mask_head_rcnn_from_config(
config, True)
task.train_step(next(iterator), model, optimizer, metrics=metrics)
default_weights = sum(len(l.trainable_weights) for l in model.layers)
# Get the number of weights from a model with backbone frozen
config.task.freeze_backbone = True
(task, iterator, model,
optimizer, metrics) = self._build_deep_mask_head_rcnn_from_config(
config, True)
task.train_step(next(iterator), model, optimizer, metrics=metrics)
frozen_weights = sum(len(l.trainable_weights) for l in model.layers)
# Make sure that the frozen model has less number of trainable weights
self.assertLess(frozen_weights, default_weights,
msg="A frozen backbone should have fewer trainable weights")
def test_freeze_backbone(self):
config = exp_factory.get_exp_config("deep_mask_head_rcnn_resnetfpn_coco")
self._edit_config_for_testing(config)
config.task.freeze_backbone = True
(task, iterator, model,
optimizer, metrics) = self._build_deep_mask_head_rcnn_from_config(
config, True)
weights_before = [
w.numpy().copy() for w in model.backbone.weights]
self.assertNotEmpty(weights_before)
task.train_step(next(iterator), model, optimizer, metrics=metrics)
weights_after = [
w.numpy().copy() for w in model.backbone.weights]
self.assertAllClose(weights_after, weights_before,
msg="Backbone weights should not change when frozen")
if __name__ == "__main__":
tf.test.main()
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment