Commit f1e8e671 authored by Vishnu Banna's avatar Vishnu Banna
Browse files

rm change to orbit in final, testing backbone training

parent eeb371d4
This source diff could not be displayed because it is too large. You can view the blob instead.
runtime:
distribution_strategy: 'mirrored'
mixed_precision_dtype: 'float16'
loss_scale: 'dynamic'
num_gpus: 2
task:
annotation_file: Null
init_checkpoint: Null
model:
num_classes: 80
input_size: [640, 640, 3]
min_level: 3
max_level: 7
losses:
l2_weight_decay: 0.0001
train_data:
input_path: Null
tfds_name: 'coco/2017'
tfds_split: 'train'
tfds_download: True
is_training: True
global_batch_size: 16
dtype: 'float16'
cycle_length: 5
decoder:
type: tfds_decoder
shuffle_buffer_size: 2
validation_data:
input_path: Null
tfds_name: 'coco/2017'
tfds_split: 'validation'
tfds_download: True
# tfds_skip_decoding_feature: source_id,image,height,width,groundtruth_classes,groundtruth_is_crowd,groundtruth_area,groundtruth_boxes
is_training: False
global_batch_size: 16
dtype: 'float16'
cycle_length: 10
decoder:
type: tfds_decoder
shuffle_buffer_size: 2
trainer:
train_steps: 532224
validation_steps: 1564
validation_interval: 2000
steps_per_loop: 200 #59136
summary_interval: 200 #59136
checkpoint_interval: 10000
optimizer_config:
optimizer:
type: 'sgd'
sgd:
momentum: 0.9
# learning_rate:
# type: 'cosine'
# cosine:
# initial_learning_rate: 0.0021875
# decay_steps: 4257792
# alpha: 0.01
# Stepwise version
learning_rate:
type: 'stepwise'
stepwise:
# boundaries: [26334, 30954]
boundaries: [421344, 495264]
# values: [0.28, 0.028, 0.0028]
values: [0.0175, 0.00175, 0.000175]
warmup:
type: 'linear'
linear:
warmup_steps: 20480
warmup_learning_rate: 0.0001634375
2020-10-30 19:06:27.235259: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudart.so.10.1
Traceback (most recent call last):
File "/opt/conda/lib/python3.7/runpy.py", line 183, in _run_module_as_main
mod_name, mod_spec, code = _get_module_details(mod_name, _Error)
File "/opt/conda/lib/python3.7/runpy.py", line 109, in _get_module_details
__import__(pkg_name)
File "/home/vbanna/tf-models/official/vision/beta/__init__.py", line 18, in <module>
from official.vision.beta import configs
File "/home/vbanna/tf-models/official/vision/beta/configs/__init__.py", line 18, in <module>
from official.vision.beta.configs import image_classification
File "/home/vbanna/tf-models/official/vision/beta/configs/image_classification.py", line 20, in <module>
from official.core import exp_factory
File "/home/vbanna/tf-models/official/core/exp_factory.py", line 19, in <module>
from official.modeling.hyperparams import config_definitions as cfg
File "/home/vbanna/tf-models/official/modeling/hyperparams/config_definitions.py", line 23, in <module>
from official.modeling.optimization.configs import optimization_config
File "/home/vbanna/tf-models/official/modeling/optimization/__init__.py", line 8, in <module>
from official.modeling.optimization.optimizer_factory import OptimizerFactory
File "/home/vbanna/tf-models/official/modeling/optimization/optimizer_factory.py", line 21, in <module>
import tensorflow_addons.optimizers as tfa_optimizers
ModuleNotFoundError: No module named 'tensorflow_addons'
2020-10-30 19:08:43.755187: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcudart.so.10.1
I1030 19:08:45.768239 139885496419712 train_utils.py:106] Final experiment parameters: {'runtime': {'all_reduce_alg': None,
'batchnorm_spatial_persistent': False,
'dataset_num_private_threads': None,
'default_shard_dim': -1,
'distribution_strategy': 'mirrored',
'enable_xla': False,
'gpu_thread_mode': None,
'loss_scale': 'dynamic',
'mixed_precision_dtype': 'float16',
'num_cores_per_replica': 1,
'num_gpus': 2,
'num_packs': 1,
'per_gpu_thread_count': 0,
'run_eagerly': False,
'task_index': -1,
'tpu': None,
'worker_hosts': None},
'task': {'annotation_file': None,
'gradient_clip_norm': 0.0,
'init_checkpoint': None,
'init_checkpoint_modules': 'backbone',
'losses': {'box_loss_weight': 50,
'focal_loss_alpha': 0.25,
'focal_loss_gamma': 1.5,
'huber_loss_delta': 0.1,
'l2_weight_decay': 0.0001},
'model': {'anchor': {'anchor_size': 4.0,
'aspect_ratios': [0.5, 1.0, 2.0],
'num_scales': 3},
'backbone': {'resnet': {'model_id': 50}, 'type': 'resnet'},
'decoder': {'fpn': {'num_filters': 256,
'use_separable_conv': False},
'type': 'fpn'},
'detection_generator': {'max_num_detections': 100,
'nms_iou_threshold': 0.5,
'pre_nms_score_threshold': 0.05,
'pre_nms_top_k': 5000,
'use_batched_nms': False},
'head': {'num_convs': 4,
'num_filters': 256,
'use_separable_conv': False},
'input_size': [640, 640, 3],
'max_level': 7,
'min_level': 3,
'norm_activation': {'activation': 'relu',
'norm_epsilon': 0.001,
'norm_momentum': 0.99,
'use_sync_bn': False},
'num_classes': 80},
'train_data': {'block_length': 1,
'cache': False,
'cycle_length': 5,
'decoder': {'tfds_decoder': {'regenerate_source_id': False},
'type': 'tfds_decoder'},
'deterministic': None,
'drop_remainder': True,
'dtype': 'float16',
'enable_tf_data_service': False,
'global_batch_size': 16,
'input_path': None,
'is_training': True,
'parser': {'aug_rand_hflip': True,
'aug_scale_max': 2.0,
'aug_scale_min': 0.5,
'match_threshold': 0.5,
'max_num_instances': 100,
'num_channels': 3,
'skip_crowd_during_training': True,
'unmatched_threshold': 0.5},
'sharding': True,
'shuffle_buffer_size': 2,
'tf_data_service_address': None,
'tf_data_service_job_name': None,
'tfds_as_supervised': False,
'tfds_data_dir': '',
'tfds_download': True,
'tfds_name': 'coco/2017',
'tfds_skip_decoding_feature': '',
'tfds_split': 'train'},
'validation_data': {'block_length': 1,
'cache': False,
'cycle_length': 10,
'decoder': {'tfds_decoder': {'regenerate_source_id': False},
'type': 'tfds_decoder'},
'deterministic': None,
'drop_remainder': True,
'dtype': 'float16',
'enable_tf_data_service': False,
'global_batch_size': 16,
'input_path': None,
'is_training': False,
'parser': {'aug_rand_hflip': False,
'aug_scale_max': 1.0,
'aug_scale_min': 1.0,
'match_threshold': 0.5,
'max_num_instances': 100,
'num_channels': 3,
'skip_crowd_during_training': True,
'unmatched_threshold': 0.5},
'sharding': True,
'shuffle_buffer_size': 2,
'tf_data_service_address': None,
'tf_data_service_job_name': None,
'tfds_as_supervised': False,
'tfds_data_dir': '',
'tfds_download': True,
'tfds_name': 'coco/2017',
'tfds_skip_decoding_feature': '',
'tfds_split': 'validation'}},
'trainer': {'allow_tpu_summary': False,
'best_checkpoint_eval_metric': '',
'best_checkpoint_export_subdir': '',
'best_checkpoint_metric_comp': 'higher',
'checkpoint_interval': 7392,
'continuous_eval_timeout': 3600,
'eval_tf_function': True,
'max_to_keep': 5,
'optimizer_config': {'ema': None,
'learning_rate': {'stepwise': {'boundaries': [421344,
495264],
'name': 'PiecewiseConstantDecay',
'values': [0.0175,
0.00175,
0.000175]},
'type': 'stepwise'},
'optimizer': {'sgd': {'clipnorm': None,
'clipvalue': None,
'decay': 0.0,
'momentum': 0.9,
'name': 'SGD',
'nesterov': False},
'type': 'sgd'},
'warmup': {'linear': {'name': 'linear',
'warmup_learning_rate': 0.0067,
'warmup_steps': 500},
'type': 'linear'}},
'steps_per_loop': 7392,
'summary_interval': 7392,
'train_steps': 532224,
'train_tf_function': True,
'train_tf_while_loop': True,
'validation_interval': 2000,
'validation_steps': 1564}}
I1030 19:08:45.768540 139885496419712 train_utils.py:115] Saving experiment configuration to training_dir/params.yaml
2020-10-30 19:08:45.783558: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcuda.so.1
2020-10-30 19:08:46.766930: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:982] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-10-30 19:08:46.767979: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1716] Found device 0 with properties:
pciBusID: 0000:00:04.0 name: Tesla P100-PCIE-16GB computeCapability: 6.0
coreClock: 1.3285GHz coreCount: 56 deviceMemorySize: 15.90GiB deviceMemoryBandwidth: 681.88GiB/s
2020-10-30 19:08:46.768062: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:982] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-10-30 19:08:46.769061: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1716] Found device 1 with properties:
pciBusID: 0000:00:05.0 name: Tesla P100-PCIE-16GB computeCapability: 6.0
coreClock: 1.3285GHz coreCount: 56 deviceMemorySize: 15.90GiB deviceMemoryBandwidth: 681.88GiB/s
2020-10-30 19:08:46.769111: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcudart.so.10.1
2020-10-30 19:08:46.771428: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcublas.so.10
2020-10-30 19:08:46.773310: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcufft.so.10
2020-10-30 19:08:46.773611: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcurand.so.10
2020-10-30 19:08:46.775726: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcusolver.so.10
2020-10-30 19:08:46.776841: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcusparse.so.10
2020-10-30 19:08:46.781620: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcudnn.so.7
2020-10-30 19:08:46.781722: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:982] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-10-30 19:08:46.782745: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:982] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-10-30 19:08:46.783768: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:982] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-10-30 19:08:46.784781: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:982] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-10-30 19:08:46.785793: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1858] Adding visible gpu devices: 0, 1
2020-10-30 19:08:46.786167: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN)to use the following CPU instructions in performance-critical operations: AVX2 FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2020-10-30 19:08:46.796393: I tensorflow/core/platform/profile_utils/cpu_utils.cc:104] CPU Frequency: 2200000000 Hz
2020-10-30 19:08:46.797730: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x55b5dbc08730 initialized for platform Host (this does not guarantee that XLA will be used). Devices:
2020-10-30 19:08:46.797757: I tensorflow/compiler/xla/service/service.cc:176] StreamExecutor device (0): Host, Default Version
2020-10-30 19:08:46.996238: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:982] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-10-30 19:08:46.998987: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:982] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-10-30 19:08:47.000171: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x55b5dbc74b30 initialized for platform CUDA (this does not guarantee that XLA will be used). Devices:
2020-10-30 19:08:47.000199: I tensorflow/compiler/xla/service/service.cc:176] StreamExecutor device (0): Tesla P100-PCIE-16GB, Compute Capability 6.0
2020-10-30 19:08:47.000208: I tensorflow/compiler/xla/service/service.cc:176] StreamExecutor device (1): Tesla P100-PCIE-16GB, Compute Capability 6.0
2020-10-30 19:08:47.000736: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:982] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-10-30 19:08:47.001752: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1716] Found device 0 with properties:
pciBusID: 0000:00:04.0 name: Tesla P100-PCIE-16GB computeCapability: 6.0
coreClock: 1.3285GHz coreCount: 56 deviceMemorySize: 15.90GiB deviceMemoryBandwidth: 681.88GiB/s
2020-10-30 19:08:47.001840: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:982] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-10-30 19:08:47.002787: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1716] Found device 1 with properties:
pciBusID: 0000:00:05.0 name: Tesla P100-PCIE-16GB computeCapability: 6.0
coreClock: 1.3285GHz coreCount: 56 deviceMemorySize: 15.90GiB deviceMemoryBandwidth: 681.88GiB/s
2020-10-30 19:08:47.002819: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcudart.so.10.1
2020-10-30 19:08:47.002852: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcublas.so.10
2020-10-30 19:08:47.002872: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcufft.so.10
2020-10-30 19:08:47.002893: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcurand.so.10
2020-10-30 19:08:47.002912: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcusolver.so.10
2020-10-30 19:08:47.002942: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcusparse.so.10
2020-10-30 19:08:47.002963: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcudnn.so.7
2020-10-30 19:08:47.003028: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:982] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-10-30 19:08:47.004093: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:982] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-10-30 19:08:47.005124: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:982] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-10-30 19:08:47.006119: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:982] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-10-30 19:08:47.007080: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1858] Adding visible gpu devices: 0, 1
2020-10-30 19:08:47.007162: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcudart.so.10.1
2020-10-30 19:08:48.517733: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1257] Device interconnect StreamExecutor with strength 1 edge matrix:
2020-10-30 19:08:48.517799: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1263] 0 1
2020-10-30 19:08:48.517809: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1276] 0: N N
2020-10-30 19:08:48.517815: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1276] 1: N N
2020-10-30 19:08:48.518120: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:982] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-10-30 19:08:48.519212: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:982] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-10-30 19:08:48.520219: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:982] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-10-30 19:08:48.521275: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1402] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 14951 MB memory) -> physical GPU (device: 0, name: Tesla P100-PCIE-16GB, pci bus id: 0000:00:04.0, compute capability: 6.0)
2020-10-30 19:08:48.521948: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:982] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-10-30 19:08:48.522918: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1402] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:1 with 14951 MB memory) -> physical GPU (device: 1, name: Tesla P100-PCIE-16GB, pci bus id: 0000:00:05.0, compute capability: 6.0)
2020-10-30 19:08:48.829361: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:982] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-10-30 19:08:48.830101: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:982] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
WARNING:tensorflow:Mixed precision compatibility check (mixed_float16): WARNING
Your GPUs may run slowly with dtype policy mixed_float16 because they do not have compute capability of at least 7.0. Your GPUs:
Tesla P100-PCIE-16GB, compute capability 6.0 (x2)
See https://developer.nvidia.com/cuda-gpus for a list of GPUs and their compute capabilities.
If you will use compatible GPU(s) not attached to this host, e.g. by running a multi-worker model, you can ignore this warning. This message will only be logged once
W1030 19:08:48.833126 139885496419712 device_compatibility_check.py:111] Mixed precision compatibility check (mixed_float16): WARNING
Your GPUs may run slowly with dtype policy mixed_float16 because they do not have compute capability of at least 7.0. Your GPUs:
Tesla P100-PCIE-16GB, compute capability 6.0 (x2)
See https://developer.nvidia.com/cuda-gpus for a list of GPUs and their compute capabilities.
If you will use compatible GPU(s) not attached to this host, e.g. by running a multi-worker model, you can ignore this warning. This message will only be logged once
INFO:tensorflow:Using MirroredStrategy with devices ('/job:localhost/replica:0/task:0/device:GPU:0', '/job:localhost/replica:0/task:0/device:GPU:1')
I1030 19:08:48.835364 139885496419712 mirrored_strategy.py:341] Using MirroredStrategy with devices ('/job:localhost/replica:0/task:0/device:GPU:0', '/job:localhost/replica:0/task:0/device:GPU:1')
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
I1030 19:08:49.179665 139885496419712 cross_device_ops.py:443] Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
I1030 19:08:49.185065 139885496419712 cross_device_ops.py:443] Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
I1030 19:08:49.191244 139885496419712 cross_device_ops.py:443] Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
I1030 19:08:49.196064 139885496419712 cross_device_ops.py:443] Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
I1030 19:08:49.220396 139885496419712 cross_device_ops.py:443] Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
I1030 19:08:49.224822 139885496419712 cross_device_ops.py:443] Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
I1030 19:08:49.384853 139885496419712 cross_device_ops.py:443] Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
I1030 19:08:49.389641 139885496419712 cross_device_ops.py:443] Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
I1030 19:08:49.395605 139885496419712 cross_device_ops.py:443] Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
I1030 19:08:49.400318 139885496419712 cross_device_ops.py:443] Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
I1030 19:08:54.437170 139885496419712 train_lib.py:139] Not exporting the best checkpoint. data_dir: training_dir, export_subdir: , metric_name:
I1030 19:08:54.437393 139885496419712 train_utils.py:44] Running default trainer.
I1030 19:08:54.534491 139885496419712 dataset_info.py:361] Load dataset info from /home/vbanna/tensorflow_datasets/coco/2017/1.1.0
I1030 19:08:54.537066 139885496419712 dataset_builder.py:299] Reusing dataset coco (/home/vbanna/tensorflow_datasets/coco/2017/1.1.0)
I1030 19:08:54.537193 139885496419712 dataset_builder.py:511] Constructing tf.data.Dataset for split train, from /home/vbanna/tensorflow_datasets/coco/2017/1.1.0
I1030 19:08:59.088062 139885496419712 dataset_info.py:361] Load dataset info from /home/vbanna/tensorflow_datasets/coco/2017/1.1.0
I1030 19:08:59.090812 139885496419712 dataset_builder.py:299] Reusing dataset coco (/home/vbanna/tensorflow_datasets/coco/2017/1.1.0)
I1030 19:08:59.090951 139885496419712 dataset_builder.py:511] Constructing tf.data.Dataset for split validation, from /home/vbanna/tensorflow_datasets/coco/2017/1.1.0
I1030 19:09:00.456362 139885496419712 train_lib.py:206] Starts to execute mode: train_and_eval
I1030 19:09:00.457955 139885496419712 controller.py:167] Train at step 0 of 2000
I1030 19:09:00.459034 139885496419712 controller.py:334] Entering training loop at step 0 to run 2000 steps
INFO:tensorflow:batch_all_reduce: 285 all-reduces with algorithm = nccl, num_packs = 1
I1030 19:09:12.923888 139885496419712 cross_device_ops.py:702] batch_all_reduce: 285 all-reduces with algorithm = nccl, num_packs = 1
INFO:tensorflow:batch_all_reduce: 285 all-reduces with algorithm = nccl, num_packs = 1
I1030 19:09:33.195622 139885496419712 cross_device_ops.py:702] batch_all_reduce: 285 all-reduces with algorithm = nccl, num_packs = 1
2020-10-30 19:10:08.985502: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcudnn.so.7
2020-10-30 19:10:10.958205: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcublas.so.10
I1030 19:31:48.572363 139885496419712 controller.py:32] step: 2000 steps_per_second: 1.46 {'total_loss': 2.952513, 'cls_loss': 1.0308509, 'box_loss': 0.009998905, 'model_loss': 1.5307966, 'training_loss': 2.952513, 'learning_rate': 0.0175}
I1030 19:31:49.536207 139885496419712 controller.py:381] Saved checkpoints in training_dir/ckpt-2000
I1030 19:31:49.537605 139885496419712 controller.py:201] Running 1564 steps of evaluation at train step: 2000
I1030 20:03:47.641623 139885496419712 coco_evaluator.py:128] There is no annotation_file in COCOEvaluator.
I1030 20:06:02.119477 139885496419712 controller.py:32] step: 2000 evaluation metric: {'total_loss': 2.7545106, 'cls_loss': 0.9337675, 'box_loss': 0.0088655995, 'model_loss': 1.3770468, 'validation_loss': 2.7545106, 'AP': 0.0066075507, 'AP50': 0.016931148, 'AP75': 0.0040874337, 'APs': 0.00055430405, 'APm': 0.004762264, 'APl': 0.009988218, 'ARmax1': 0.04598566, 'ARmax10': 0.079140015, 'ARmax100': 0.08211258, 'ARs': 0.003963818, 'ARm': 0.03661192, 'ARl': 0.13360435}
I1030 20:06:02.146182 139885496419712 controller.py:167] Train at step 2000 of 4000
I1030 20:06:02.146733 139885496419712 controller.py:334] Entering training loop at step 2000 to run 2000 steps
I1030 20:27:36.706292 139885496419712 controller.py:32] step: 4000 steps_per_second: 0.60 {'total_loss': 2.6101823, 'cls_loss': 0.8718026, 'box_loss': 0.008097591, 'model_loss': 1.2766824, 'training_loss': 2.6101823, 'learning_rate': 0.0175}
I1030 20:27:36.717345 139885496419712 controller.py:201] Running 1564 steps of evaluation at train step: 4000
I1030 20:57:40.566221 139885496419712 coco_evaluator.py:128] There is no annotation_file in COCOEvaluator.
I1030 21:00:01.935145 139885496419712 controller.py:32] step: 4000 evaluation metric: {'total_loss': 2.5162745, 'cls_loss': 0.8355965, 'box_loss': 0.0078043677, 'model_loss': 1.225815, 'validation_loss': 2.5162745, 'AP': 0.021224046, 'AP50': 0.044965032, 'AP75': 0.017090354, 'APs': 0.0025279159, 'APm': 0.015290717, 'APl': 0.03299058, 'ARmax1': 0.07679166, 'ARmax10': 0.13622928, 'ARmax100': 0.14035718, 'ARs': 0.013522613, 'ARm': 0.09343928, 'ARl': 0.222368}
I1030 21:00:01.974603 139885496419712 controller.py:167] Train at step 4000 of 6000
I1030 21:00:01.975189 139885496419712 controller.py:334] Entering training loop at step 4000 to run 2000 steps
I1030 21:21:35.986476 139885496419712 controller.py:32] step: 6000 steps_per_second: 0.62 {'total_loss': 2.4335802, 'cls_loss': 0.81078637, 'box_loss': 0.0074549178, 'model_loss': 1.183532, 'training_loss': 2.4335802, 'learning_rate': 0.0175}
I1030 21:21:35.996690 139885496419712 controller.py:201] Running 1564 steps of evaluation at train step: 6000
I1030 21:51:36.730204 139885496419712 coco_evaluator.py:128] There is no annotation_file in COCOEvaluator.
I1030 21:54:01.907360 139885496419712 controller.py:32] step: 6000 evaluation metric: {'total_loss': 2.3840065, 'cls_loss': 0.8075656, 'box_loss': 0.0073272684, 'model_loss': 1.1739291, 'validation_loss': 2.3840065, 'AP': 0.028316734, 'AP50': 0.0557604, 'AP75': 0.025625333, 'APs': 0.0040961187, 'APm': 0.021599174, 'APl': 0.042726006, 'ARmax1': 0.0904667, 'ARmax10': 0.15265372, 'ARmax100': 0.15850124, 'ARs': 0.021724917, 'ARm': 0.13395934, 'ARl': 0.23424989}
I1030 21:54:01.934641 139885496419712 controller.py:167] Train at step 6000 of 8000
I1030 21:54:01.935158 139885496419712 controller.py:334] Entering training loop at step 6000 to run 2000 steps
I1030 22:15:35.174637 139885496419712 controller.py:32] step: 8000 steps_per_second: 0.62 {'total_loss': 2.288062, 'cls_loss': 0.76706284, 'box_loss': 0.00698252, 'model_loss': 1.1161889, 'training_loss': 2.288062, 'learning_rate': 0.0175}
I1030 22:15:35.184676 139885496419712 controller.py:201] Running 1564 steps of evaluation at train step: 8000
I1030 22:45:35.542509 139885496419712 coco_evaluator.py:128] There is no annotation_file in COCOEvaluator.
I1030 22:47:53.906541 139885496419712 controller.py:32] step: 8000 evaluation metric: {'total_loss': 2.2552168, 'cls_loss': 0.76536787, 'box_loss': 0.0071057146, 'model_loss': 1.1206533, 'validation_loss': 2.2552168, 'AP': 0.04372218, 'AP50': 0.084751606, 'AP75': 0.040151175, 'APs': 0.00746491, 'APm': 0.037402872, 'APl': 0.06688058, 'ARmax1': 0.11082497, 'ARmax10': 0.1863409, 'ARmax100': 0.19500773, 'ARs': 0.03183885, 'ARm': 0.17150564, 'ARl': 0.28622577}
I1030 22:47:53.939067 139885496419712 controller.py:167] Train at step 8000 of 10000
I1030 22:47:53.939667 139885496419712 controller.py:334] Entering training loop at step 8000 to run 2000 steps
I1030 23:09:27.526988 139885496419712 controller.py:32] step: 10000 steps_per_second: 0.62 {'total_loss': 2.1607676, 'cls_loss': 0.7287942, 'box_loss': 0.006658137, 'model_loss': 1.0617015, 'training_loss': 2.1607676, 'learning_rate': 0.0175}
I1030 23:09:28.357703 139885496419712 controller.py:381] Saved checkpoints in training_dir/ckpt-10000
I1030 23:09:28.359310 139885496419712 controller.py:201] Running 1564 steps of evaluation at train step: 10000
I1030 23:39:30.371847 139885496419712 coco_evaluator.py:128] There is no annotation_file in COCOEvaluator.
step: 2000 steps_per_second: 1.46 {'total_loss': 2.952513, 'cls_loss': 1.0308509, 'box_loss': 0.009998905, 'model_loss': 1.5307966, 'training_loss': 2.952513, 'learning_rate': 0.0175}
creating index...
index created!
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=90.15s).
Accumulating evaluation results...
DONE (t=15.30s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.007
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.017
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.004
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.001
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.005
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.010
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.046
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.079
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.082
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.004
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.037
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.134
step: 2000 evaluation metric: {'total_loss': 2.7545106, 'cls_loss': 0.9337675, 'box_loss': 0.0088655995, 'model_loss': 1.3770468, 'validation_loss': 2.7545106, 'AP': 0.0066075507, 'AP50': 0.016931148, 'AP75': 0.0040874337, 'APs': 0.00055430405, 'APm': 0.004762264, 'APl': 0.009988218, 'ARmax1': 0.04598566, 'ARmax10': 0.079140015, 'ARmax100': 0.08211258, 'ARs': 0.003963818, 'ARm': 0.03661192, 'ARl': 0.13360435}
step: 4000 steps_per_second: 0.60 {'total_loss': 2.6101823, 'cls_loss': 0.8718026, 'box_loss': 0.008097591, 'model_loss': 1.2766824, 'training_loss': 2.6101823, 'learning_rate': 0.0175}
creating index...
index created!
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=93.47s).
Accumulating evaluation results...
DONE (t=18.72s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.021
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.045
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.017
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.003
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.015
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.033
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.077
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.136
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.140
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.014
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.093
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.222
step: 4000 evaluation metric: {'total_loss': 2.5162745, 'cls_loss': 0.8355965, 'box_loss': 0.0078043677, 'model_loss': 1.225815, 'validation_loss': 2.5162745, 'AP': 0.021224046, 'AP50': 0.044965032, 'AP75': 0.017090354, 'APs': 0.0025279159, 'APm': 0.015290717, 'APl': 0.03299058, 'ARmax1': 0.07679166, 'ARmax10': 0.13622928, 'ARmax100': 0.14035718, 'ARs': 0.013522613, 'ARm': 0.09343928, 'ARl': 0.222368}
step: 6000 steps_per_second: 0.62 {'total_loss': 2.4335802, 'cls_loss': 0.81078637, 'box_loss': 0.0074549178, 'model_loss': 1.183532, 'training_loss': 2.4335802, 'learning_rate': 0.0175}
creating index...
index created!
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=103.30s).
Accumulating evaluation results...
DONE (t=15.17s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.028
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.056
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.026
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.004
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.022
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.043
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.090
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.153
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.159
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.022
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.134
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.234
step: 6000 evaluation metric: {'total_loss': 2.3840065, 'cls_loss': 0.8075656, 'box_loss': 0.0073272684, 'model_loss': 1.1739291, 'validation_loss': 2.3840065, 'AP': 0.028316734, 'AP50': 0.0557604, 'AP75': 0.025625333, 'APs': 0.0040961187, 'APm': 0.021599174, 'APl': 0.042726006, 'ARmax1': 0.0904667, 'ARmax10': 0.15265372, 'ARmax100': 0.15850124, 'ARs': 0.021724917, 'ARm': 0.13395934, 'ARl': 0.23424989}
step: 8000 steps_per_second: 0.62 {'total_loss': 2.288062, 'cls_loss': 0.76706284, 'box_loss': 0.00698252, 'model_loss': 1.1161889, 'training_loss': 2.288062, 'learning_rate': 0.0175}
creating index...
index created!
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=95.07s).
Accumulating evaluation results...
DONE (t=14.88s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.044
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.085
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.040
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.007
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.037
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.067
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.111
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.186
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.195
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.032
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.172
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.286
step: 8000 evaluation metric: {'total_loss': 2.2552168, 'cls_loss': 0.76536787, 'box_loss': 0.0071057146, 'model_loss': 1.1206533, 'validation_loss': 2.2552168, 'AP': 0.04372218, 'AP50': 0.084751606, 'AP75': 0.040151175, 'APs': 0.00746491, 'APm': 0.037402872, 'APl': 0.06688058, 'ARmax1': 0.11082497, 'ARmax10': 0.1863409, 'ARmax100': 0.19500773, 'ARs': 0.03183885, 'ARm': 0.17150564, 'ARl': 0.28622577}
step: 10000 steps_per_second: 0.62 {'total_loss': 2.1607676, 'cls_loss': 0.7287942, 'box_loss': 0.006658137, 'model_loss': 1.0617015, 'training_loss': 2.1607676, 'learning_rate': 0.0175}
creating index...
index created!
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=95.23s).
Accumulating evaluation results...
DONE (t=14.89s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.054
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.101
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.053
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.008
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.045
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.084
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.123
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.206
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.214I1030 23:41:48.419408 139885496419712 controller.py:32] step: 10000 evaluation metric: {'total_loss': 2.1264522, 'cls_loss': 0.72794926, 'box_loss': 0.006682801, 'model_loss': 1.0620897, 'validation_loss': 2.1264522, 'AP': 0.054195903, 'AP50': 0.10130227, 'AP75': 0.052946668, 'APs': 0.008050608, 'APm': 0.04529771, 'APl': 0.08441855, 'ARmax1': 0.122621804, 'ARmax10': 0.20553222, 'ARmax100': 0.21406764, 'ARs': 0.0369188, 'ARm': 0.19431876, 'ARl': 0.32154137}
I1030 23:41:48.448698 139885496419712 controller.py:167] Train at step 10000 of 12000
I1030 23:41:48.449317 139885496419712 controller.py:334] Entering training loop at step 10000 to run 2000 steps
I1031 00:03:22.028709 139885496419712 controller.py:32] step: 12000 steps_per_second: 0.62 {'total_loss': 2.0662794, 'cls_loss': 0.7089585, 'box_loss': 0.0065142633, 'model_loss': 1.0346715, 'training_loss': 2.0662794, 'learning_rate': 0.0175}
I1031 00:03:22.039475 139885496419712 controller.py:201] Running 1564 steps of evaluation at train step: 12000
I1031 00:33:23.688980 139885496419712 coco_evaluator.py:128] There is no annotation_file in COCOEvaluator.
I1031 00:35:45.345192 139885496419712 controller.py:32] step: 12000 evaluation metric: {'total_loss': 2.0662136, 'cls_loss': 0.7376824, 'box_loss': 0.006583337, 'model_loss': 1.066849, 'validation_loss': 2.0662136, 'AP': 0.059586268, 'AP50': 0.11119602, 'AP75': 0.05633912, 'APs': 0.011301484, 'APm': 0.052767806, 'APl': 0.089686915, 'ARmax1': 0.12972695, 'ARmax10': 0.21874677, 'ARmax100': 0.22815393, 'ARs': 0.041254662, 'ARm': 0.19183718, 'ARl': 0.3477511}
I1031 00:35:45.385468 139885496419712 controller.py:167] Train at step 12000 of 14000
I1031 00:35:45.386043 139885496419712 controller.py:334] Entering training loop at step 12000 to run 2000 steps
I1031 00:57:18.957478 139885496419712 controller.py:32] step: 14000 steps_per_second: 0.62 {'total_loss': 1.969025, 'cls_loss': 0.6870775, 'box_loss': 0.00626731, 'model_loss': 1.0004433, 'training_loss': 1.969025, 'learning_rate': 0.0175}
I1031 00:57:18.968271 139885496419712 controller.py:201] Running 1564 steps of evaluation at train step: 14000
I1031 01:27:21.231963 139885496419712 coco_evaluator.py:128] There is no annotation_file in COCOEvaluator.
I1031 01:29:44.961457 139885496419712 controller.py:32] step: 14000 evaluation metric: {'total_loss': 1.9750702, 'cls_loss': 0.7104824, 'box_loss': 0.0065220655, 'model_loss': 1.0365856, 'validation_loss': 1.9750702, 'AP': 0.06698314, 'AP50': 0.12553436, 'AP75': 0.06383309, 'APs': 0.012342103, 'APm': 0.05755333, 'APl': 0.10402489, 'ARmax1': 0.13613912, 'ARmax10': 0.2210759, 'ARmax100': 0.23037915, 'ARs': 0.042005893, 'ARm': 0.20071448, 'ARl': 0.3492529}
I1031 01:29:44.993362 139885496419712 controller.py:167] Train at step 14000 of 16000
I1031 01:29:44.994000 139885496419712 controller.py:334] Entering training loop at step 14000 to run 2000 steps
I1031 01:51:18.396526 139885496419712 controller.py:32] step: 16000 steps_per_second: 0.62 {'total_loss': 1.8947617, 'cls_loss': 0.67529494, 'box_loss': 0.006190216, 'model_loss': 0.9848059, 'training_loss': 1.8947617, 'learning_rate': 0.0175}
I1031 01:51:18.406329 139885496419712 controller.py:201] Running 1564 steps of evaluation at train step: 16000
I1031 02:21:20.922477 139885496419712 coco_evaluator.py:128] There is no annotation_file in COCOEvaluator.
I1031 02:23:47.485918 139885496419712 controller.py:32] step: 16000 evaluation metric: {'total_loss': 1.9796606, 'cls_loss': 0.78193307, 'box_loss': 0.0063071055, 'model_loss': 1.0972879, 'validation_loss': 1.9796606, 'AP': 0.065123744, 'AP50': 0.11864428, 'AP75': 0.06447318, 'APs': 0.015601997, 'APm': 0.06371723, 'APl': 0.093020916, 'ARmax1': 0.12038191, 'ARmax10': 0.20010678, 'ARmax100': 0.2089182, 'ARs': 0.046627745, 'ARm': 0.20985255, 'ARl': 0.26905948}
I1031 02:23:47.515874 139885496419712 controller.py:167] Train at step 16000 of 18000
I1031 02:23:47.516430 139885496419712 controller.py:334] Entering training loop at step 16000 to run 2000 steps
I1031 02:45:21.368029 139885496419712 controller.py:32] step: 18000 steps_per_second: 0.62 {'total_loss': 1.8081924, 'cls_loss': 0.65352744, 'box_loss': 0.0059808283, 'model_loss': 0.95256877, 'training_loss': 1.8081924, 'learning_rate': 0.0175}
I1031 02:45:22.204224 139885496419712 controller.py:381] Saved checkpoints in training_dir/ckpt-18000
I1031 02:45:22.205612 139885496419712 controller.py:201] Running 1564 steps of evaluation at train step: 18000
I1031 03:15:22.550125 139885496419712 coco_evaluator.py:128] There is no annotation_file in COCOEvaluator.
I1031 03:17:51.459395 139885496419712 controller.py:32] step: 18000 evaluation metric: {'total_loss': 1.8092948, 'cls_loss': 0.6702564, 'box_loss': 0.006191191, 'model_loss': 0.97981566, 'validation_loss': 1.8092948, 'AP': 0.084427126, 'AP50': 0.15396488, 'AP75': 0.08334383, 'APs': 0.020888355, 'APm': 0.072113805, 'APl': 0.1291615, 'ARmax1': 0.15485245, 'ARmax10': 0.25424233, 'ARmax100': 0.26476988, 'ARs': 0.05902366, 'ARm': 0.24243225, 'ARl': 0.39029872}
I1031 03:17:51.488985 139885496419712 controller.py:167] Train at step 18000 of 20000
I1031 03:17:51.489529 139885496419712 controller.py:334] Entering training loop at step 18000 to run 2000 steps
I1031 03:39:24.790594 139885496419712 controller.py:32] step: 20000 steps_per_second: 0.62 {'total_loss': 1.7407566, 'cls_loss': 0.6418706, 'box_loss': 0.0058854446, 'model_loss': 0.93614256, 'training_loss': 1.7407566, 'learning_rate': 0.0175}
I1031 03:39:24.801592 139885496419712 controller.py:201] Running 1564 steps of evaluation at train step: 20000
I1031 04:09:25.722967 139885496419712 coco_evaluator.py:128] There is no annotation_file in COCOEvaluator.
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.037
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.194
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.322
step: 10000 evaluation metric: {'total_loss': 2.1264522, 'cls_loss': 0.72794926, 'box_loss': 0.006682801, 'model_loss': 1.0620897, 'validation_loss': 2.1264522, 'AP': 0.054195903, 'AP50': 0.10130227, 'AP75': 0.052946668, 'APs': 0.008050608, 'APm': 0.04529771, 'APl': 0.08441855, 'ARmax1': 0.122621804, 'ARmax10': 0.20553222, 'ARmax100': 0.21406764, 'ARs': 0.0369188, 'ARm': 0.19431876, 'ARl': 0.32154137}
step: 12000 steps_per_second: 0.62 {'total_loss': 2.0662794, 'cls_loss': 0.7089585, 'box_loss': 0.0065142633, 'model_loss': 1.0346715, 'training_loss': 2.0662794, 'learning_rate': 0.0175}
creating index...
index created!
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=97.03s).
Accumulating evaluation results...
DONE (t=18.19s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.060
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.111
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.056
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.011
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.053
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.090
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.130
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.219
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.228
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.041
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.192
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.348
step: 12000 evaluation metric: {'total_loss': 2.0662136, 'cls_loss': 0.7376824, 'box_loss': 0.006583337, 'model_loss': 1.066849, 'validation_loss': 2.0662136, 'AP': 0.059586268, 'AP50': 0.11119602, 'AP75': 0.05633912, 'APs': 0.011301484, 'APm': 0.052767806, 'APl': 0.089686915, 'ARmax1': 0.12972695, 'ARmax10': 0.21874677, 'ARmax100': 0.22815393, 'ARs': 0.041254662, 'ARm': 0.19183718, 'ARl': 0.3477511}
step: 14000 steps_per_second: 0.62 {'total_loss': 1.969025, 'cls_loss': 0.6870775, 'box_loss': 0.00626731, 'model_loss': 1.0004433, 'training_loss': 1.969025, 'learning_rate': 0.0175}
creating index...
index created!
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=103.28s).
Accumulating evaluation results...
DONE (t=14.10s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.067
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.126
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.064
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.012
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.058
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.104
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.136
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.221
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.230
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.042
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.201
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.349
step: 14000 evaluation metric: {'total_loss': 1.9750702, 'cls_loss': 0.7104824, 'box_loss': 0.0065220655, 'model_loss': 1.0365856, 'validation_loss': 1.9750702, 'AP': 0.06698314, 'AP50': 0.12553436, 'AP75': 0.06383309, 'APs': 0.012342103, 'APm': 0.05755333, 'APl': 0.10402489, 'ARmax1': 0.13613912, 'ARmax10': 0.2210759, 'ARmax100': 0.23037915, 'ARs': 0.042005893, 'ARm': 0.20071448, 'ARl': 0.3492529}
step: 16000 steps_per_second: 0.62 {'total_loss': 1.8947617, 'cls_loss': 0.67529494, 'box_loss': 0.006190216, 'model_loss': 0.9848059, 'training_loss': 1.8947617, 'learning_rate': 0.0175}
creating index...
index created!
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=105.23s).
Accumulating evaluation results...
DONE (t=13.30s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.065
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.119
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.064
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.016
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.064
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.093
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.120
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.200
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.209
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.047
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.210
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.269
step: 16000 evaluation metric: {'total_loss': 1.9796606, 'cls_loss': 0.78193307, 'box_loss': 0.0063071055, 'model_loss': 1.0972879, 'validation_loss': 1.9796606, 'AP': 0.065123744, 'AP50': 0.11864428, 'AP75': 0.06447318, 'APs': 0.015601997, 'APm': 0.06371723, 'APl': 0.093020916, 'ARmax1': 0.12038191, 'ARmax10': 0.20010678, 'ARmax100': 0.2089182, 'ARs': 0.046627745, 'ARm': 0.20985255, 'ARl': 0.26905948}
step: 18000 steps_per_second: 0.62 {'total_loss': 1.8081924, 'cls_loss': 0.65352744, 'box_loss': 0.0059808283, 'model_loss': 0.95256877, 'training_loss': 1.8081924, 'learning_rate': 0.0175}
creating index...
index created!
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=103.97s).
Accumulating evaluation results...
DONE (t=15.19s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.084
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.154
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.083
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.021
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.072
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.129
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.155
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.254
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.265
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.059
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.242
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.390
step: 18000 evaluation metric: {'total_loss': 1.8092948, 'cls_loss': 0.6702564, 'box_loss': 0.006191191, 'model_loss': 0.97981566, 'validation_loss': 1.8092948, 'AP': 0.084427126, 'AP50': 0.15396488, 'AP75': 0.08334383, 'APs': 0.020888355, 'APm': 0.072113805, 'APl': 0.1291615, 'ARmax1': 0.15485245, 'ARmax10': 0.25424233, 'ARmax100': 0.26476988, 'ARs': 0.05902366, 'ARm': 0.24243225, 'ARl': 0.39029872}
step: 20000 steps_per_second: 0.62 {'total_loss': 1.7407566, 'cls_loss': 0.6418706, 'box_loss': 0.0058854446, 'model_loss': 0.93614256, 'training_loss': 1.7407566, 'learning_rate': 0.0175}
creating index...
index created!
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=95.65s).
Accumulating evaluation results...
DONE (t=13.85s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.093I1031 04:11:42.257416 139885496419712 controller.py:32] step: 20000 evaluation metric: {'total_loss': 1.7365601, 'cls_loss': 0.6543167, 'box_loss': 0.0060396246, 'model_loss': 0.9562982, 'validation_loss': 1.7365601, 'AP': 0.09287657, 'AP50': 0.16696998, 'AP75': 0.091831, 'APs': 0.016764913, 'APm': 0.08103716, 'APl': 0.14146243, 'ARmax1': 0.15737882, 'ARmax10': 0.25748417, 'ARmax100': 0.27028137, 'ARs': 0.050834853, 'ARm': 0.250391, 'ARl': 0.4025708}
I1031 04:11:42.288806 139885496419712 controller.py:167] Train at step 20000 of 22000
I1031 04:11:42.289491 139885496419712 controller.py:334] Entering training loop at step 20000 to run 2000 steps
I1031 04:33:16.587417 139885496419712 controller.py:32] step: 22000 steps_per_second: 0.62 {'total_loss': 1.6866505, 'cls_loss': 0.6370228, 'box_loss': 0.00584322, 'model_loss': 0.9291848, 'training_loss': 1.6866505, 'learning_rate': 0.0175}
I1031 04:33:16.598840 139885496419712 controller.py:201] Running 1564 steps of evaluation at train step: 22000
I1031 05:03:17.182420 139885496419712 coco_evaluator.py:128] There is no annotation_file in COCOEvaluator.
I1031 05:05:34.372040 139885496419712 controller.py:32] step: 22000 evaluation metric: {'total_loss': 1.689145, 'cls_loss': 0.6559819, 'box_loss': 0.0059656464, 'model_loss': 0.95426446, 'validation_loss': 1.689145, 'AP': 0.097518176, 'AP50': 0.17676663, 'AP75': 0.09696455, 'APs': 0.024464171, 'APm': 0.08607653, 'APl': 0.14655727, 'ARmax1': 0.16281688, 'ARmax10': 0.2641258, 'ARmax100': 0.27565268, 'ARs': 0.070531555, 'ARm': 0.26941356, 'ARl': 0.3862451}
I1031 05:05:34.408134 139885496419712 controller.py:167] Train at step 22000 of 24000
I1031 05:05:34.408637 139885496419712 controller.py:334] Entering training loop at step 22000 to run 2000 steps
I1031 05:27:08.061284 139885496419712 controller.py:32] step: 24000 steps_per_second: 0.62 {'total_loss': 1.617964, 'cls_loss': 0.6204008, 'box_loss': 0.00568443, 'model_loss': 0.90462315, 'training_loss': 1.617964, 'learning_rate': 0.0175}
I1031 05:27:08.071365 139885496419712 controller.py:201] Running 1564 steps of evaluation at train step: 24000
I1031 05:57:07.937834 139885496419712 coco_evaluator.py:128] There is no annotation_file in COCOEvaluator.
I1031 05:59:30.306594 139885496419712 controller.py:32] step: 24000 evaluation metric: {'total_loss': 1.6017793, 'cls_loss': 0.6207918, 'box_loss': 0.005774223, 'model_loss': 0.9095029, 'validation_loss': 1.6017793, 'AP': 0.1170256, 'AP50': 0.20438606, 'AP75': 0.11793307, 'APs': 0.024898289, 'APm': 0.09308181, 'APl': 0.1858881, 'ARmax1': 0.17547216, 'ARmax10': 0.286284, 'ARmax100': 0.30100176, 'ARs': 0.072808474, 'ARm': 0.28913948, 'ARl': 0.43568316}
I1031 05:59:30.340992 139885496419712 controller.py:167] Train at step 24000 of 26000
I1031 05:59:30.341486 139885496419712 controller.py:334] Entering training loop at step 24000 to run 2000 steps
I1031 06:21:05.103114 139885496419712 controller.py:32] step: 26000 steps_per_second: 0.62 {'total_loss': 1.5680726, 'cls_loss': 0.6153645, 'box_loss': 0.0056095384, 'model_loss': 0.8958406, 'training_loss': 1.5680726, 'learning_rate': 0.0175}
I1031 06:21:05.891192 139885496419712 controller.py:381] Saved checkpoints in training_dir/ckpt-26000
I1031 06:21:05.892592 139885496419712 controller.py:201] Running 1564 steps of evaluation at train step: 26000
I1031 06:51:07.122737 139885496419712 coco_evaluator.py:128] There is no annotation_file in COCOEvaluator.
I1031 06:53:27.149734 139885496419712 controller.py:32] step: 26000 evaluation metric: {'total_loss': 1.5675296, 'cls_loss': 0.62697786, 'box_loss': 0.0057582282, 'model_loss': 0.91488904, 'validation_loss': 1.5675296, 'AP': 0.1090435, 'AP50': 0.19172487, 'AP75': 0.10934281, 'APs': 0.019161979, 'APm': 0.093128696, 'APl': 0.16513485, 'ARmax1': 0.1705256, 'ARmax10': 0.27630976, 'ARmax100': 0.2891266, 'ARs': 0.06790081, 'ARm': 0.2806543, 'ARl': 0.40896055}
I1031 06:53:27.187281 139885496419712 controller.py:167] Train at step 26000 of 28000
I1031 06:53:27.187832 139885496419712 controller.py:334] Entering training loop at step 26000 to run 2000 steps
I1031 07:15:01.245083 139885496419712 controller.py:32] step: 28000 steps_per_second: 0.62 {'total_loss': 1.5182695, 'cls_loss': 0.60736024, 'box_loss': 0.005538965, 'model_loss': 0.8843092, 'training_loss': 1.5182695, 'learning_rate': 0.0175}
I1031 07:15:01.255714 139885496419712 controller.py:201] Running 1564 steps of evaluation at train step: 28000
I1031 07:45:01.585833 139885496419712 coco_evaluator.py:128] There is no annotation_file in COCOEvaluator.
I1031 07:47:28.053360 139885496419712 controller.py:32] step: 28000 evaluation metric: {'total_loss': 1.5189503, 'cls_loss': 0.62144244, 'box_loss': 0.0056359097, 'model_loss': 0.9032378, 'validation_loss': 1.5189503, 'AP': 0.12010572, 'AP50': 0.20608844, 'AP75': 0.1223577, 'APs': 0.028878134, 'APm': 0.095463865, 'APl': 0.18948387, 'ARmax1': 0.18265218, 'ARmax10': 0.29688853, 'ARmax100': 0.30938557, 'ARs': 0.076697454, 'ARm': 0.2944731, 'ARl': 0.45407113}
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.167
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.092
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.017
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.081
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.141
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.157
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.257
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.270
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.051
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.250
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.403
step: 20000 evaluation metric: {'total_loss': 1.7365601, 'cls_loss': 0.6543167, 'box_loss': 0.0060396246, 'model_loss': 0.9562982, 'validation_loss': 1.7365601, 'AP': 0.09287657, 'AP50': 0.16696998, 'AP75': 0.091831, 'APs': 0.016764913, 'APm': 0.08103716, 'APl': 0.14146243, 'ARmax1': 0.15737882, 'ARmax10': 0.25748417, 'ARmax100': 0.27028137, 'ARs': 0.050834853, 'ARm': 0.250391, 'ARl': 0.4025708}
step: 22000 steps_per_second: 0.62 {'total_loss': 1.6866505, 'cls_loss': 0.6370228, 'box_loss': 0.00584322, 'model_loss': 0.9291848, 'training_loss': 1.6866505, 'learning_rate': 0.0175}
creating index...
index created!
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=95.87s).
Accumulating evaluation results...
DONE (t=13.83s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.098
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.177
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.097
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.024
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.086
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.147
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.163
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.264
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.276
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.071
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.269
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.386
step: 22000 evaluation metric: {'total_loss': 1.689145, 'cls_loss': 0.6559819, 'box_loss': 0.0059656464, 'model_loss': 0.95426446, 'validation_loss': 1.689145, 'AP': 0.097518176, 'AP50': 0.17676663, 'AP75': 0.09696455, 'APs': 0.024464171, 'APm': 0.08607653, 'APl': 0.14655727, 'ARmax1': 0.16281688, 'ARmax10': 0.2641258, 'ARmax100': 0.27565268, 'ARs': 0.070531555, 'ARm': 0.26941356, 'ARl': 0.3862451}
step: 24000 steps_per_second: 0.62 {'total_loss': 1.617964, 'cls_loss': 0.6204008, 'box_loss': 0.00568443, 'model_loss': 0.90462315, 'training_loss': 1.617964, 'learning_rate': 0.0175}
creating index...
index created!
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=100.82s).
Accumulating evaluation results...
DONE (t=13.87s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.117
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.204
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.118
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.025
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.093
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.186
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.175
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.286
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.301
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.073
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.289
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.436
step: 24000 evaluation metric: {'total_loss': 1.6017793, 'cls_loss': 0.6207918, 'box_loss': 0.005774223, 'model_loss': 0.9095029, 'validation_loss': 1.6017793, 'AP': 0.1170256, 'AP50': 0.20438606, 'AP75': 0.11793307, 'APs': 0.024898289, 'APm': 0.09308181, 'APl': 0.1858881, 'ARmax1': 0.17547216, 'ARmax10': 0.286284, 'ARmax100': 0.30100176, 'ARs': 0.072808474, 'ARm': 0.28913948, 'ARl': 0.43568316}
step: 26000 steps_per_second: 0.62 {'total_loss': 1.5680726, 'cls_loss': 0.6153645, 'box_loss': 0.0056095384, 'model_loss': 0.8958406, 'training_loss': 1.5680726, 'learning_rate': 0.0175}
creating index...
index created!
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=99.39s).
Accumulating evaluation results...
DONE (t=14.22s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.109
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.192
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.109
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.019
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.093
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.165
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.171
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.276
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.289
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.068
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.281
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.409
step: 26000 evaluation metric: {'total_loss': 1.5675296, 'cls_loss': 0.62697786, 'box_loss': 0.0057582282, 'model_loss': 0.91488904, 'validation_loss': 1.5675296, 'AP': 0.1090435, 'AP50': 0.19172487, 'AP75': 0.10934281, 'APs': 0.019161979, 'APm': 0.093128696, 'APl': 0.16513485, 'ARmax1': 0.1705256, 'ARmax10': 0.27630976, 'ARmax100': 0.2891266, 'ARs': 0.06790081, 'ARm': 0.2806543, 'ARl': 0.40896055}
step: 28000 steps_per_second: 0.62 {'total_loss': 1.5182695, 'cls_loss': 0.60736024, 'box_loss': 0.005538965, 'model_loss': 0.8843092, 'training_loss': 1.5182695, 'learning_rate': 0.0175}
creating index...
index created!
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=102.35s).
Accumulating evaluation results...
DONE (t=14.55s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.120
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.206
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.122
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.029
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.095
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.189
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.183
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.297
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.309
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.077
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.294
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.454
step: 28000 evaluation metric: {'total_loss': 1.5189503, 'cls_loss': 0.62144244, 'box_loss': 0.0056359097, 'model_loss': 0.9032378, 'validation_loss': 1.5189503, 'AP': 0.12010572, 'AP50': 0.20608844, 'AP75': 0.1223577, 'APs': 0.028878134, 'APm': 0.095463865, 'APl': 0.18948387, 'ARmax1': 0.18265218, 'ARmax10': 0.29688853, 'ARmax100': 0.30938557, 'ARs': 0.076697454, 'ARm': 0.2944731, 'ARl': 0.45407113}I1031 07:47:28.088339 139885496419712 controller.py:167] Train at step 28000 of 30000
I1031 07:47:28.088917 139885496419712 controller.py:334] Entering training loop at step 28000 to run 2000 steps
I1031 08:09:02.155096 139885496419712 controller.py:32] step: 30000 steps_per_second: 0.62 {'total_loss': 1.4702015, 'cls_loss': 0.5977997, 'box_loss': 0.005480808, 'model_loss': 0.87184054, 'training_loss': 1.4702015, 'learning_rate': 0.0175}
I1031 08:09:02.165273 139885496419712 controller.py:201] Running 1564 steps of evaluation at train step: 30000
I1031 08:39:00.798716 139885496419712 coco_evaluator.py:128] There is no annotation_file in COCOEvaluator.
I1031 08:41:16.337606 139885496419712 controller.py:32] step: 30000 evaluation metric: {'total_loss': 1.4634776, 'cls_loss': 0.60642874, 'box_loss': 0.005513028, 'model_loss': 0.88208026, 'validation_loss': 1.4634776, 'AP': 0.12509336, 'AP50': 0.21519625, 'AP75': 0.12908259, 'APs': 0.024677623, 'APm': 0.10667812, 'APl': 0.19518888, 'ARmax1': 0.1834508, 'ARmax10': 0.29639313, 'ARmax100': 0.3098349, 'ARs': 0.074831896, 'ARm': 0.29660422, 'ARl': 0.4517507}
I1031 08:41:16.367896 139885496419712 controller.py:167] Train at step 30000 of 32000
I1031 08:41:16.368516 139885496419712 controller.py:334] Entering training loop at step 30000 to run 2000 steps
I1031 09:02:50.250838 139885496419712 controller.py:32] step: 32000 steps_per_second: 0.62 {'total_loss': 1.4236084, 'cls_loss': 0.5891118, 'box_loss': 0.005384081, 'model_loss': 0.8583154, 'training_loss': 1.4236084, 'learning_rate': 0.0175}
I1031 09:02:50.261479 139885496419712 controller.py:201] Running 1564 steps of evaluation at train step: 32000
I1031 09:32:52.535594 139885496419712 coco_evaluator.py:128] There is no annotation_file in COCOEvaluator.
I1031 09:35:15.225395 139885496419712 controller.py:32] step: 32000 evaluation metric: {'total_loss': 1.4254229, 'cls_loss': 0.6034627, 'box_loss': 0.005448834, 'model_loss': 0.8759045, 'validation_loss': 1.4254229, 'AP': 0.12228533, 'AP50': 0.21047877, 'AP75': 0.12515314, 'APs': 0.021129027, 'APm': 0.106184624, 'APl': 0.18722458, 'ARmax1': 0.18199767, 'ARmax10': 0.29837707, 'ARmax100': 0.31369108, 'ARs': 0.0720723, 'ARm': 0.29641658, 'ARl': 0.46136618}
I1031 09:35:15.259743 139885496419712 controller.py:167] Train at step 32000 of 34000
I1031 09:35:15.260261 139885496419712 controller.py:334] Entering training loop at step 32000 to run 2000 steps
I1031 09:56:49.535590 139885496419712 controller.py:32] step: 34000 steps_per_second: 0.62 {'total_loss': 1.3879714, 'cls_loss': 0.5854915, 'box_loss': 0.0053599207, 'model_loss': 0.8534866, 'training_loss': 1.3879714, 'learning_rate': 0.0175}
I1031 09:56:50.356324 139885496419712 controller.py:381] Saved checkpoints in training_dir/ckpt-34000
I1031 09:56:50.357955 139885496419712 controller.py:201] Running 1564 steps of evaluation at train step: 34000
I1031 10:26:50.954882 139885496419712 coco_evaluator.py:128] There is no annotation_file in COCOEvaluator.
I1031 10:29:03.090598 139885496419712 controller.py:32] step: 34000 evaluation metric: {'total_loss': 1.4026945, 'cls_loss': 0.6071424, 'box_loss': 0.0055147246, 'model_loss': 0.8828786, 'validation_loss': 1.4026945, 'AP': 0.12370313, 'AP50': 0.21386495, 'AP75': 0.1273946, 'APs': 0.023783108, 'APm': 0.103701055, 'APl': 0.19189158, 'ARmax1': 0.18421498, 'ARmax10': 0.2939707, 'ARmax100': 0.30837682, 'ARs': 0.075453445, 'ARm': 0.28140718, 'ARl': 0.4575001}
I1031 10:29:03.115907 139885496419712 controller.py:167] Train at step 34000 of 36000
I1031 10:29:03.116474 139885496419712 controller.py:334] Entering training loop at step 34000 to run 2000 steps
I1031 10:50:37.206810 139885496419712 controller.py:32] step: 36000 steps_per_second: 0.62 {'total_loss': 1.3549321, 'cls_loss': 0.58248144, 'box_loss': 0.005332086, 'model_loss': 0.8490854, 'training_loss': 1.3549321, 'learning_rate': 0.0175}
I1031 10:50:37.217392 139885496419712 controller.py:201] Running 1564 steps of evaluation at train step: 36000
I1031 11:20:39.467981 139885496419712 coco_evaluator.py:128] There is no annotation_file in COCOEvaluator.
I1031 11:22:56.289299 139885496419712 controller.py:32] step: 36000 evaluation metric: {'total_loss': 1.3784864, 'cls_loss': 0.60839164, 'box_loss': 0.0055575483, 'model_loss': 0.8862693, 'validation_loss': 1.3784864, 'AP': 0.12903413, 'AP50': 0.22434664, 'AP75': 0.13116604, 'APs': 0.025630709, 'APm': 0.111586586, 'APl': 0.20179033, 'ARmax1': 0.18421678, 'ARmax10': 0.29527283, 'ARmax100': 0.3096738, 'ARs': 0.07373256, 'ARm': 0.2999831, 'ARl': 0.44662184}
I1031 11:22:56.318710 139885496419712 controller.py:167] Train at step 36000 of 38000
I1031 11:22:56.319190 139885496419712 controller.py:334] Entering training loop at step 36000 to run 2000 steps
I1031 11:44:30.339666 139885496419712 controller.py:32] step: 38000 steps_per_second: 0.62 {'total_loss': 1.3185784, 'cls_loss': 0.57590026, 'box_loss': 0.0052685854, 'model_loss': 0.8393302, 'training_loss': 1.3185784, 'learning_rate': 0.0175}
I1031 11:44:30.350597 139885496419712 controller.py:201] Running 1564 steps of evaluation at train step: 38000
I1031 12:14:31.522972 139885496419712 coco_evaluator.py:128] There is no annotation_file in COCOEvaluator.
step: 30000 steps_per_second: 0.62 {'total_loss': 1.4702015, 'cls_loss': 0.5977997, 'box_loss': 0.005480808, 'model_loss': 0.87184054, 'training_loss': 1.4702015, 'learning_rate': 0.0175}
creating index...
index created!
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=94.71s).
Accumulating evaluation results...
DONE (t=13.82s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.125
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.215
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.129
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.025
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.107
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.195
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.183
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.296
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.310
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.075
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.297
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.452
step: 30000 evaluation metric: {'total_loss': 1.4634776, 'cls_loss': 0.60642874, 'box_loss': 0.005513028, 'model_loss': 0.88208026, 'validation_loss': 1.4634776, 'AP': 0.12509336, 'AP50': 0.21519625, 'AP75': 0.12908259, 'APs': 0.024677623, 'APm': 0.10667812, 'APl': 0.19518888, 'ARmax1': 0.1834508, 'ARmax10': 0.29639313, 'ARmax100': 0.3098349, 'ARs': 0.074831896, 'ARm': 0.29660422, 'ARl': 0.4517507}
step: 32000 steps_per_second: 0.62 {'total_loss': 1.4236084, 'cls_loss': 0.5891118, 'box_loss': 0.005384081, 'model_loss': 0.8583154, 'training_loss': 1.4236084, 'learning_rate': 0.0175}
creating index...
index created!
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=99.15s).
Accumulating evaluation results...
DONE (t=17.32s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.122
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.210
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.125
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.021
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.106
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.187
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.182
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.298
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.314
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.072
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.296
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.461
step: 32000 evaluation metric: {'total_loss': 1.4254229, 'cls_loss': 0.6034627, 'box_loss': 0.005448834, 'model_loss': 0.8759045, 'validation_loss': 1.4254229, 'AP': 0.12228533, 'AP50': 0.21047877, 'AP75': 0.12515314, 'APs': 0.021129027, 'APm': 0.106184624, 'APl': 0.18722458, 'ARmax1': 0.18199767, 'ARmax10': 0.29837707, 'ARmax100': 0.31369108, 'ARs': 0.0720723, 'ARm': 0.29641658, 'ARl': 0.46136618}
step: 34000 steps_per_second: 0.62 {'total_loss': 1.3879714, 'cls_loss': 0.5854915, 'box_loss': 0.0053599207, 'model_loss': 0.8534866, 'training_loss': 1.3879714, 'learning_rate': 0.0175}
creating index...
index created!
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=91.78s).
Accumulating evaluation results...
DONE (t=13.64s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.124
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.214
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.127
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.024
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.104
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.192
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.184
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.294
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.308
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.075
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.281
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.458
step: 34000 evaluation metric: {'total_loss': 1.4026945, 'cls_loss': 0.6071424, 'box_loss': 0.0055147246, 'model_loss': 0.8828786, 'validation_loss': 1.4026945, 'AP': 0.12370313, 'AP50': 0.21386495, 'AP75': 0.1273946, 'APs': 0.023783108, 'APm': 0.103701055, 'APl': 0.19189158, 'ARmax1': 0.18421498, 'ARmax10': 0.2939707, 'ARmax100': 0.30837682, 'ARs': 0.075453445, 'ARm': 0.28140718, 'ARl': 0.4575001}
step: 36000 steps_per_second: 0.62 {'total_loss': 1.3549321, 'cls_loss': 0.58248144, 'box_loss': 0.005332086, 'model_loss': 0.8490854, 'training_loss': 1.3549321, 'learning_rate': 0.0175}
creating index...
index created!
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=96.87s).
Accumulating evaluation results...
DONE (t=13.45s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.129
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.224
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.131
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.026
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.112
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.202
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.184
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.295
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.310
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.074
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.300
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.447
step: 36000 evaluation metric: {'total_loss': 1.3784864, 'cls_loss': 0.60839164, 'box_loss': 0.0055575483, 'model_loss': 0.8862693, 'validation_loss': 1.3784864, 'AP': 0.12903413, 'AP50': 0.22434664, 'AP75': 0.13116604, 'APs': 0.025630709, 'APm': 0.111586586, 'APl': 0.20179033, 'ARmax1': 0.18421678, 'ARmax10': 0.29527283, 'ARmax100': 0.3096738, 'ARs': 0.07373256, 'ARm': 0.2999831, 'ARl': 0.44662184}
step: 38000 steps_per_second: 0.62 {'total_loss': 1.3185784, 'cls_loss': 0.57590026, 'box_loss': 0.0052685854, 'model_loss': 0.8393302, 'training_loss': 1.3185784, 'learning_rate': 0.0175}
creating index...
index created!
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=88.68s).
Accumulating evaluation results...
DONE (t=13.35s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.129
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.225
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.132
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.028
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.114
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.196
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.184
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.298
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.313I1031 12:16:40.926157 139885496419712 controller.py:32] step: 38000 evaluation metric: {'total_loss': 1.3514221, 'cls_loss': 0.61072814, 'box_loss': 0.00548145, 'model_loss': 0.8848008, 'validation_loss': 1.3514221, 'AP': 0.12941317, 'AP50': 0.22522616, 'AP75': 0.13184388, 'APs': 0.028182765, 'APm': 0.1135972, 'APl': 0.19637726, 'ARmax1': 0.18401565, 'ARmax10': 0.29843047, 'ARmax100': 0.31292313, 'ARs': 0.08129782, 'ARm': 0.3145205, 'ARl': 0.44674942}
I1031 12:16:40.960808 139885496419712 controller.py:167] Train at step 38000 of 40000
I1031 12:16:40.961389 139885496419712 controller.py:334] Entering training loop at step 38000 to run 2000 steps
I1031 12:38:15.597293 139885496419712 controller.py:32] step: 40000 steps_per_second: 0.62 {'total_loss': 1.2835882, 'cls_loss': 0.56903994, 'box_loss': 0.005200124, 'model_loss': 0.82904565, 'training_loss': 1.2835882, 'learning_rate': 0.0175}
I1031 12:38:15.607194 139885496419712 controller.py:201] Running 1564 steps of evaluation at train step: 40000
I1031 13:08:15.942293 139885496419712 coco_evaluator.py:128] There is no annotation_file in COCOEvaluator.
I1031 13:10:33.274583 139885496419712 controller.py:32] step: 40000 evaluation metric: {'total_loss': 1.2893002, 'cls_loss': 0.5780909, 'box_loss': 0.0053695966, 'model_loss': 0.8465711, 'validation_loss': 1.2893002, 'AP': 0.1392194, 'AP50': 0.24242955, 'AP75': 0.14185813, 'APs': 0.03170243, 'APm': 0.11697013, 'APl': 0.21997045, 'ARmax1': 0.19765268, 'ARmax10': 0.3194477, 'ARmax100': 0.3355437, 'ARs': 0.09075803, 'ARm': 0.3163557, 'ARl': 0.4858842}
I1031 13:10:33.310683 139885496419712 controller.py:167] Train at step 40000 of 42000
I1031 13:10:33.311316 139885496419712 controller.py:334] Entering training loop at step 40000 to run 2000 steps
I1031 13:32:07.838726 139885496419712 controller.py:32] step: 42000 steps_per_second: 0.62 {'total_loss': 1.2697237, 'cls_loss': 0.57452255, 'box_loss': 0.0052705845, 'model_loss': 0.8380518, 'training_loss': 1.2697237, 'learning_rate': 0.0175}
I1031 13:32:08.668227 139885496419712 controller.py:381] Saved checkpoints in training_dir/ckpt-42000
I1031 13:32:08.669720 139885496419712 controller.py:201] Running 1564 steps of evaluation at train step: 42000
I1031 14:02:11.143864 139885496419712 coco_evaluator.py:128] There is no annotation_file in COCOEvaluator.
I1031 14:04:29.832409 139885496419712 controller.py:32] step: 42000 evaluation metric: {'total_loss': 1.5447754, 'cls_loss': 0.785464, 'box_loss': 0.006719882, 'model_loss': 1.121458, 'validation_loss': 1.5447754, 'AP': 0.062637836, 'AP50': 0.11126457, 'AP75': 0.06359231, 'APs': 0.011471858, 'APm': 0.05856425, 'APl': 0.09969066, 'ARmax1': 0.12162978, 'ARmax10': 0.19260113, 'ARmax100': 0.19863887, 'ARs': 0.027858548, 'ARm': 0.17577986, 'ARl': 0.3217958}
I1031 14:04:29.866588 139885496419712 controller.py:167] Train at step 42000 of 44000
I1031 14:04:29.867208 139885496419712 controller.py:334] Entering training loop at step 42000 to run 2000 steps
I1031 14:26:03.703194 139885496419712 controller.py:32] step: 44000 steps_per_second: 0.62 {'total_loss': 1.2505301, 'cls_loss': 0.5742789, 'box_loss': 0.0052680196, 'model_loss': 0.83768034, 'training_loss': 1.2505301, 'learning_rate': 0.0175}
I1031 14:26:03.713587 139885496419712 controller.py:201] Running 1564 steps of evaluation at train step: 44000
I1031 14:56:02.766963 139885496419712 coco_evaluator.py:128] There is no annotation_file in COCOEvaluator.
I1031 14:58:16.430249 139885496419712 controller.py:32] step: 44000 evaluation metric: {'total_loss': 1.3667822, 'cls_loss': 0.6602397, 'box_loss': 0.006074844, 'model_loss': 0.9639824, 'validation_loss': 1.3667822, 'AP': 0.09594054, 'AP50': 0.17444487, 'AP75': 0.094005845, 'APs': 0.021597486, 'APm': 0.093030944, 'APl': 0.14369863, 'ARmax1': 0.15980989, 'ARmax10': 0.26280856, 'ARmax100': 0.27431372, 'ARs': 0.059566103, 'ARm': 0.2790743, 'ARl': 0.38445896}
I1031 14:58:16.463191 139885496419712 controller.py:167] Train at step 44000 of 46000
I1031 14:58:16.463725 139885496419712 controller.py:334] Entering training loop at step 44000 to run 2000 steps
I1031 15:19:51.490733 139885496419712 controller.py:32] step: 46000 steps_per_second: 0.62 {'total_loss': 1.2127715, 'cls_loss': 0.56231374, 'box_loss': 0.0051487056, 'model_loss': 0.81974953, 'training_loss': 1.2127715, 'learning_rate': 0.0175}
I1031 15:19:51.501270 139885496419712 controller.py:201] Running 1564 steps of evaluation at train step: 46000
I1031 15:49:52.190389 139885496419712 coco_evaluator.py:128] There is no annotation_file in COCOEvaluator.
I1031 15:52:00.247564 139885496419712 controller.py:32] step: 46000 evaluation metric: {'total_loss': 1.220416, 'cls_loss': 0.57451785, 'box_loss': 0.005251268, 'model_loss': 0.83708125, 'validation_loss': 1.220416, 'AP': 0.14968255, 'AP50': 0.2530588, 'AP75': 0.15353745, 'APs': 0.033541586, 'APm': 0.13266043, 'APl': 0.22829902, 'ARmax1': 0.19840653, 'ARmax10': 0.31818593, 'ARmax100': 0.3341818, 'ARs': 0.08637451, 'ARm': 0.31760666, 'ARl': 0.49106246}
I1031 15:52:00.282764 139885496419712 controller.py:167] Train at step 46000 of 48000
I1031 15:52:00.283312 139885496419712 controller.py:334] Entering training loop at step 46000 to run 2000 steps
I1031 16:13:34.921621 139885496419712 controller.py:32] step: 48000 steps_per_second: 0.62 {'total_loss': 1.1860626, 'cls_loss': 0.557108, 'box_loss': 0.0050959033, 'model_loss': 0.8119028, 'training_loss': 1.1860626, 'learning_rate': 0.0175}
I1031 16:13:34.932175 139885496419712 controller.py:201] Running 1564 steps of evaluation at train step: 48000
I1031 16:43:35.332994 139885496419712 coco_evaluator.py:128] There is no annotation_file in COCOEvaluator.
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.081
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.315
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.447
step: 38000 evaluation metric: {'total_loss': 1.3514221, 'cls_loss': 0.61072814, 'box_loss': 0.00548145, 'model_loss': 0.8848008, 'validation_loss': 1.3514221, 'AP': 0.12941317, 'AP50': 0.22522616, 'AP75': 0.13184388, 'APs': 0.028182765, 'APm': 0.1135972, 'APl': 0.19637726, 'ARmax1': 0.18401565, 'ARmax10': 0.29843047, 'ARmax100': 0.31292313, 'ARs': 0.08129782, 'ARm': 0.3145205, 'ARl': 0.44674942}
step: 40000 steps_per_second: 0.62 {'total_loss': 1.2835882, 'cls_loss': 0.56903994, 'box_loss': 0.005200124, 'model_loss': 0.82904565, 'training_loss': 1.2835882, 'learning_rate': 0.0175}
creating index...
index created!
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=96.40s).
Accumulating evaluation results...
DONE (t=13.63s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.139
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.242
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.142
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.032
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.117
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.220
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.198
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.319
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.336
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.091
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.316
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.486
step: 40000 evaluation metric: {'total_loss': 1.2893002, 'cls_loss': 0.5780909, 'box_loss': 0.0053695966, 'model_loss': 0.8465711, 'validation_loss': 1.2893002, 'AP': 0.1392194, 'AP50': 0.24242955, 'AP75': 0.14185813, 'APs': 0.03170243, 'APm': 0.11697013, 'APl': 0.21997045, 'ARmax1': 0.19765268, 'ARmax10': 0.3194477, 'ARmax100': 0.3355437, 'ARs': 0.09075803, 'ARm': 0.3163557, 'ARl': 0.4858842}
step: 42000 steps_per_second: 0.62 {'total_loss': 1.2697237, 'cls_loss': 0.57452255, 'box_loss': 0.0052705845, 'model_loss': 0.8380518, 'training_loss': 1.2697237, 'learning_rate': 0.0175}
creating index...
index created!
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=96.45s).
Accumulating evaluation results...
DONE (t=14.10s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.063
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.111
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.064
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.011
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.059
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.100
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.122
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.193
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.199
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.028
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.176
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.322
step: 42000 evaluation metric: {'total_loss': 1.5447754, 'cls_loss': 0.785464, 'box_loss': 0.006719882, 'model_loss': 1.121458, 'validation_loss': 1.5447754, 'AP': 0.062637836, 'AP50': 0.11126457, 'AP75': 0.06359231, 'APs': 0.011471858, 'APm': 0.05856425, 'APl': 0.09969066, 'ARmax1': 0.12162978, 'ARmax10': 0.19260113, 'ARmax100': 0.19863887, 'ARs': 0.027858548, 'ARm': 0.17577986, 'ARl': 0.3217958}
step: 44000 steps_per_second: 0.62 {'total_loss': 1.2505301, 'cls_loss': 0.5742789, 'box_loss': 0.0052680196, 'model_loss': 0.83768034, 'training_loss': 1.2505301, 'learning_rate': 0.0175}
creating index...
index created!
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=93.86s).
Accumulating evaluation results...
DONE (t=13.11s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.096
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.174
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.094
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.022
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.093
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.144
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.160
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.263
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.274
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.060
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.279
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.384
step: 44000 evaluation metric: {'total_loss': 1.3667822, 'cls_loss': 0.6602397, 'box_loss': 0.006074844, 'model_loss': 0.9639824, 'validation_loss': 1.3667822, 'AP': 0.09594054, 'AP50': 0.17444487, 'AP75': 0.094005845, 'APs': 0.021597486, 'APm': 0.093030944, 'APl': 0.14369863, 'ARmax1': 0.15980989, 'ARmax10': 0.26280856, 'ARmax100': 0.27431372, 'ARs': 0.059566103, 'ARm': 0.2790743, 'ARl': 0.38445896}
step: 46000 steps_per_second: 0.62 {'total_loss': 1.2127715, 'cls_loss': 0.56231374, 'box_loss': 0.0051487056, 'model_loss': 0.81974953, 'training_loss': 1.2127715, 'learning_rate': 0.0175}
creating index...
index created!
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=89.58s).
Accumulating evaluation results...
DONE (t=12.69s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.150
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.253
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.154
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.034
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.133
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.228
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.198
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.318
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.334
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.086
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.318
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.491
step: 46000 evaluation metric: {'total_loss': 1.220416, 'cls_loss': 0.57451785, 'box_loss': 0.005251268, 'model_loss': 0.83708125, 'validation_loss': 1.220416, 'AP': 0.14968255, 'AP50': 0.2530588, 'AP75': 0.15353745, 'APs': 0.033541586, 'APm': 0.13266043, 'APl': 0.22829902, 'ARmax1': 0.19840653, 'ARmax10': 0.31818593, 'ARmax100': 0.3341818, 'ARs': 0.08637451, 'ARm': 0.31760666, 'ARl': 0.49106246}
step: 48000 steps_per_second: 0.62 {'total_loss': 1.1860626, 'cls_loss': 0.557108, 'box_loss': 0.0050959033, 'model_loss': 0.8119028, 'training_loss': 1.1860626, 'learning_rate': 0.0175}
creating index...
index created!
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=94.08s).
Accumulating evaluation results...
DONE (t=13.05s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.156I1031 16:45:49.831901 139885496419712 controller.py:32] step: 48000 evaluation metric: {'total_loss': 1.190438, 'cls_loss': 0.5644366, 'box_loss': 0.0052165976, 'model_loss': 0.8252664, 'validation_loss': 1.190438, 'AP': 0.15589666, 'AP50': 0.2666446, 'AP75': 0.1579226, 'APs': 0.032910142, 'APm': 0.13874066, 'APl': 0.22911705, 'ARmax1': 0.20407797, 'ARmax10': 0.32992476, 'ARmax100': 0.34607226, 'ARs': 0.10615714, 'ARm': 0.3494303, 'ARl': 0.48322043}
I1031 16:45:49.869277 139885496419712 controller.py:167] Train at step 48000 of 50000
I1031 16:45:49.869823 139885496419712 controller.py:334] Entering training loop at step 48000 to run 2000 steps
I1031 17:07:24.221114 139885496419712 controller.py:32] step: 50000 steps_per_second: 0.62 {'total_loss': 1.1622236, 'cls_loss': 0.55269384, 'box_loss': 0.005057054, 'model_loss': 0.8055469, 'training_loss': 1.1622236, 'learning_rate': 0.0175}
I1031 17:07:25.054098 139885496419712 controller.py:381] Saved checkpoints in training_dir/ckpt-50000
I1031 17:07:25.055474 139885496419712 controller.py:201] Running 1564 steps of evaluation at train step: 50000
I1031 17:37:31.005617 139885496419712 coco_evaluator.py:128] There is no annotation_file in COCOEvaluator.
I1031 17:39:58.140462 139885496419712 controller.py:32] step: 50000 evaluation metric: {'total_loss': 1.182763, 'cls_loss': 0.5719879, 'box_loss': 0.0052478183, 'model_loss': 0.83437854, 'validation_loss': 1.182763, 'AP': 0.15345125, 'AP50': 0.25885797, 'AP75': 0.1577261, 'APs': 0.03554234, 'APm': 0.1326204, 'APl': 0.23334704, 'ARmax1': 0.20183603, 'ARmax10': 0.3270075, 'ARmax100': 0.34437168, 'ARs': 0.10711023, 'ARm': 0.34062216, 'ARl': 0.49045214}
I1031 17:39:58.175596 139885496419712 controller.py:167] Train at step 50000 of 52000
I1031 17:39:58.176388 139885496419712 controller.py:334] Entering training loop at step 50000 to run 2000 steps
I1031 18:02:00.363424 139885496419712 controller.py:32] step: 52000 steps_per_second: 0.61 {'total_loss': 1.1411799, 'cls_loss': 0.5503363, 'box_loss': 0.0050072405, 'model_loss': 0.8006991, 'training_loss': 1.1411799, 'learning_rate': 0.0175}
I1031 18:02:00.402074 139885496419712 controller.py:201] Running 1564 steps of evaluation at train step: 52000
I1031 18:32:04.887839 139885496419712 coco_evaluator.py:128] There is no annotation_file in COCOEvaluator.
I1031 18:34:26.981041 139885496419712 controller.py:32] step: 52000 evaluation metric: {'total_loss': 1.1437737, 'cls_loss': 0.5545166, 'box_loss': 0.0051303557, 'model_loss': 0.8110344, 'validation_loss': 1.1437737, 'AP': 0.16220997, 'AP50': 0.2706167, 'AP75': 0.16882622, 'APs': 0.03653328, 'APm': 0.13979578, 'APl': 0.24624981, 'ARmax1': 0.20707768, 'ARmax10': 0.33736664, 'ARmax100': 0.35503754, 'ARs': 0.09993061, 'ARm': 0.35223114, 'ARl': 0.5025141}
I1031 18:34:27.030765 139885496419712 controller.py:167] Train at step 52000 of 54000
I1031 18:34:27.031316 139885496419712 controller.py:334] Entering training loop at step 52000 to run 2000 steps
I1031 18:56:05.414261 139885496419712 controller.py:32] step: 54000 steps_per_second: 0.62 {'total_loss': 1.1175134, 'cls_loss': 0.5445361, 'box_loss': 0.00495084, 'model_loss': 0.79207766, 'training_loss': 1.1175134, 'learning_rate': 0.0175}
I1031 18:56:05.438895 139885496419712 controller.py:201] Running 1564 steps of evaluation at train step: 54000
I1031 19:26:06.722558 139885496419712 coco_evaluator.py:128] There is no annotation_file in COCOEvaluator.
I1031 19:28:20.350446 139885496419712 controller.py:32] step: 54000 evaluation metric: {'total_loss': 1.1411448, 'cls_loss': 0.566344, 'box_loss': 0.005129792, 'model_loss': 0.8228335, 'validation_loss': 1.1411448, 'AP': 0.15545042, 'AP50': 0.2636171, 'AP75': 0.15803272, 'APs': 0.028823914, 'APm': 0.13085106, 'APl': 0.23903799, 'ARmax1': 0.20254348, 'ARmax10': 0.32471123, 'ARmax100': 0.34092107, 'ARs': 0.088891774, 'ARm': 0.32869858, 'ARl': 0.49599567}
I1031 19:28:20.382083 139885496419712 controller.py:167] Train at step 54000 of 56000
I1031 19:28:20.382549 139885496419712 controller.py:334] Entering training loop at step 54000 to run 2000 steps
......@@ -16,14 +16,16 @@ task:
train_data:
tfds_name: 'imagenet2012'
tfds_split: 'train'
tfds_data_dir: '~/tensorflow_datasets'
tfds_data_dir: '~/tensorflow_datasets/'
tfds_download: true
is_training: true
global_batch_size: 128
dtype: 'float16'
validation_data:
tfds_name: 'imagenet2012'
tfds_split: 'validation'
tfds_data_dir: '~/tensorflow_datasets'
tfds_data_dir: '~/tensorflow_datasets/'
tfds_download: true
is_training: true
global_batch_size: 128
dtype: 'float16'
......
......@@ -15,14 +15,16 @@ task:
train_data:
tfds_name: 'imagenet2012'
tfds_split: 'train'
tfds_data_dir: '~/tensorflow_datasets'
tfds_data_dir: '~/tensorflow_datasets/'
tfds_download: true
is_training: true
global_batch_size: 128
dtype: 'float16'
validation_data:
tfds_name: 'imagenet2012'
tfds_split: 'validation'
tfds_data_dir: '~/tensorflow_datasets'
tfds_data_dir: '~/tensorflow_datasets/'
tfds_download: true
is_training: true
global_batch_size: 128
dtype: 'float16'
......
......@@ -35,6 +35,8 @@ FLAGS = flags.FLAGS
def main(_):
gin.parse_config_files_and_bindings(FLAGS.gin_file, FLAGS.gin_params)
params = train_utils.parse_configuration(FLAGS)
import pprint
pprint.pprint(params.as_dict())
model_dir = FLAGS.model_dir
if 'train' in FLAGS.mode:
# Pure eval modes do not output yaml files. Otherwise continuous eval job
......
......@@ -81,8 +81,9 @@ def make_distributed_dataset(strategy, dataset_or_fn, *args, **kwargs):
if "input_context" in arg_names:
kwargs["input_context"] = input_context
return dataset_or_fn(*args, **kwargs)
return strategy.distribute_datasets_from_function(dataset_fn)
return strategy.experimental_distribute_datasets_from_function(dataset_fn)
#return strategy.distribute_datasets_from_function(dataset_fn)
def get_value(x):
......
runtime:
distribution_strategy: 'mirrored'
mixed_precision_dtype: 'float32'
loss_scale: 'dynamic'
num_gpus: 1
task:
init_checkpoint: Null
model:
num_classes: 80
input_size: [640, 640, 3]
min_level: 3
max_level: 7
losses:
l2_weight_decay: 0.0001
train_data:
input_path: Null
tfds_name: 'coco/2017'
tfds_split: 'train'
tfds_download: True
is_training: True
global_batch_size: 2
dtype: 'float16'
cycle_length: 5
decoder:
type: tfds_decoder
shuffle_buffer_size: 2
validation_data:
input_path: Null
tfds_name: 'coco/2017'
tfds_split: 'validation'
tfds_download: True
# tfds_skip_decoding_feature: source_id,image,height,width,groundtruth_classes,groundtruth_is_crowd,groundtruth_area,groundtruth_boxes
is_training: False
global_batch_size: 2
dtype: 'float16'
cycle_length: 10
decoder:
type: tfds_decoder
shuffle_buffer_size: 2
trainer:
train_steps: 4257792
validation_steps: 2500
validation_interval: 5000
steps_per_loop: 100 #59136
summary_interval: 100 #59136
checkpoint_interval: 59136
optimizer_config:
optimizer:
type: 'sgd'
sgd:
momentum: 0.9
# learning_rate:
# type: 'cosine'
# cosine:
# initial_learning_rate: 0.0021875
# decay_steps: 4257792
# alpha: 0.01
# Stepwise version
learning_rate:
type: 'stepwise'
stepwise:
# boundaries: [26334, 30954]
boundaries: [3370752, 3962112]
# values: [0.28, 0.028, 0.0028]
values: [0.0021875, 0.00021875, 0.000021875]
warmup:
type: 'linear'
linear:
warmup_steps: 64000
warmup_learning_rate: 0.0000523
import tensorflow_datasets as tfds
import tensorflow as tf
from official.vision.beta.dataloaders import decoder
import matplotlib.pyplot as plt
import cv2
class TfdsExampleDecoder(decoder.Decoder):
"""Tensorflow Dataset Example proto decoder."""
def __init__(self,
include_mask=False,
regenerate_source_id=False):
self._include_mask = include_mask
self._regenerate_source_id = regenerate_source_id
def decode(self, serialized_example):
"""Decode the serialized example.
Args:
serialized_example: a single serialized tf.Example string.
Returns:
decoded_tensors: a dictionary of tensors with the following fields:
- source_id: a string scalar tensor.
- image: a uint8 tensor of shape [None, None, 3].
- height: an integer scalar tensor.
- width: an integer scalar tensor.
- groundtruth_classes: a int64 tensor of shape [None].
- groundtruth_is_crowd: a bool tensor of shape [None].
- groundtruth_area: a float32 tensor of shape [None].
- groundtruth_boxes: a float32 tensor of shape [None, 4].
- groundtruth_instance_masks: a float32 tensor of shape
[None, None, None].
- groundtruth_instance_masks_png: a string tensor of shape [None].
"""
decoded_tensors = {
'source_id': serialized_example['image/id'],
'image': serialized_example['image'],
'height': tf.shape(serialized_example['image'])[0],
'width': tf.shape(serialized_example['image'])[1],
'groundtruth_classes': serialized_example['objects']['label'],
'groundtruth_is_crowd': serialized_example['objects']['is_crowd'],
'groundtruth_area': serialized_example['objects']['area'],
'groundtruth_boxes': serialized_example['objects']['bbox'],
}
return decoded_tensors
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment