Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
ResNet50_tensorflow
Commits
f1a59682
"...git@developer.sourcefind.cn:OpenDAS/mmdetection3d.git" did not exist on "52fe5baa8649309a5f0cd78685e34c9871201650"
Unverified
Commit
f1a59682
authored
Apr 16, 2019
by
rxsang
Committed by
GitHub
Apr 16, 2019
Browse files
Set input layer `batch_size` in multi-replica mode (#6578)
parent
b4b8c723
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
3 additions
and
8 deletions
+3
-8
official/resnet/keras/keras_imagenet_main.py
official/resnet/keras/keras_imagenet_main.py
+3
-8
No files found.
official/resnet/keras/keras_imagenet_main.py
View file @
f1a59682
...
@@ -176,14 +176,9 @@ def run(flags_obj):
...
@@ -176,14 +176,9 @@ def run(flags_obj):
if
flags_obj
.
enable_xla
and
not
flags_obj
.
enable_eager
:
if
flags_obj
.
enable_xla
and
not
flags_obj
.
enable_eager
:
# TODO(b/129861005): Fix OOM issue in eager mode when setting
# TODO(b/129861005): Fix OOM issue in eager mode when setting
# `batch_size` in keras.Input layer.
# `batch_size` in keras.Input layer.
if
strategy
and
strategy
.
num_replicas_in_sync
>
1
:
input_layer_batch_size
=
flags_obj
.
batch_size
# TODO(b/129791381): Specify `per_replica_batch_size` value in
# DistributionStrategy multi-replica case.
per_replica_batch_size
=
None
else
:
per_replica_batch_size
=
flags_obj
.
batch_size
else
:
else
:
per_replica
_batch_size
=
None
input_layer
_batch_size
=
None
if
flags_obj
.
use_trivial_model
:
if
flags_obj
.
use_trivial_model
:
model
=
trivial_model
.
trivial_model
(
imagenet_main
.
NUM_CLASSES
)
model
=
trivial_model
.
trivial_model
(
imagenet_main
.
NUM_CLASSES
)
...
@@ -191,7 +186,7 @@ def run(flags_obj):
...
@@ -191,7 +186,7 @@ def run(flags_obj):
model
=
resnet_model
.
resnet50
(
model
=
resnet_model
.
resnet50
(
num_classes
=
imagenet_main
.
NUM_CLASSES
,
num_classes
=
imagenet_main
.
NUM_CLASSES
,
dtype
=
dtype
,
dtype
=
dtype
,
batch_size
=
per_replica
_batch_size
)
batch_size
=
input_layer
_batch_size
)
model
.
compile
(
loss
=
'sparse_categorical_crossentropy'
,
model
.
compile
(
loss
=
'sparse_categorical_crossentropy'
,
optimizer
=
optimizer
,
optimizer
=
optimizer
,
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment