Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
ResNet50_tensorflow
Commits
f0bc684c
Commit
f0bc684c
authored
Jul 30, 2020
by
Kaushik Shivakumar
Browse files
fix this pr
parent
dabfc27b
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
21 additions
and
38 deletions
+21
-38
research/object_detection/box_coders/detr_box_coder.py
research/object_detection/box_coders/detr_box_coder.py
+14
-32
research/object_detection/core/target_assigner_test.py
research/object_detection/core/target_assigner_test.py
+7
-6
No files found.
research/object_detection/box_coders/detr_box_coder.py
View file @
f0bc684c
...
...
@@ -13,13 +13,13 @@
# limitations under the License.
# ==============================================================================
"""
Faster RCNN
box coder.
"""
DETR
box coder.
Faster RCNN
box coder follows the coding schema described below:
ty =
(y - ya) / ha
tx =
(x - xa) / wa
th =
log(h / ha)
tw =
log(w / wa)
DETR
box coder follows the coding schema described below:
ty =
y
tx =
x
th =
h
tw =
w
where x, y, w, h denote the box's center coordinates, width and height
respectively. Similarly, xa, ya, wa, ha denote the anchor's center
coordinates, width and height. tx, ty, tw and th denote the anchor-encoded
...
...
@@ -39,19 +39,15 @@ EPSILON = 1e-8
class
DETRBoxCoder
(
box_coder
.
BoxCoder
):
"""Faster RCNN box coder."""
def
__init__
(
self
,
scale_factors
=
None
):
"""Constructor for
FasterRcnn
BoxCoder.
def
__init__
(
self
):
"""Constructor for
DETR
BoxCoder.
Args:
scale_factors: List of 4 positive scalars to scale ty, tx, th and tw.
If set to None, does not perform scaling. For Faster RCNN,
the open-source implementation recommends using [10.0, 10.0, 5.0, 5.0].
"""
if
None
:
assert
len
(
scale_factors
)
==
4
for
scalar
in
scale_factors
:
assert
scalar
>
0
self
.
_scale_factors
=
scale_factors
pass
@
property
def
code_size
(
self
):
...
...
@@ -69,16 +65,7 @@ class DETRBoxCoder(box_coder.BoxCoder):
[ty, tx, th, tw].
"""
# Convert anchors to the center coordinate representation.
ycenter
,
xcenter
,
h
,
w
=
boxes
.
get_center_coordinates_and_sizes
()
# Avoid NaN in division and log below.
h
+=
EPSILON
w
+=
EPSILON
tx
=
xcenter
ty
=
ycenter
tw
=
w
#tf.log(w)
th
=
h
#tf.log(h)
ty
,
tx
,
th
,
tw
=
boxes
.
get_center_coordinates_and_sizes
()
return
tf
.
transpose
(
tf
.
stack
([
ty
,
tx
,
th
,
tw
]))
def
_decode
(
self
,
rel_codes
,
anchors
):
...
...
@@ -92,14 +79,9 @@ class DETRBoxCoder(box_coder.BoxCoder):
boxes: BoxList holding N bounding boxes.
"""
ty
,
tx
,
th
,
tw
=
tf
.
unstack
(
tf
.
transpose
(
rel_codes
))
w
=
tw
h
=
th
ycenter
=
ty
xcenter
=
tx
ymin
=
ycenter
-
h
/
2.
xmin
=
xcenter
-
w
/
2.
ymax
=
ycenter
+
h
/
2.
xmax
=
xcenter
+
w
/
2.
ymin
=
ty
-
th
/
2.
xmin
=
tx
-
tw
/
2.
ymax
=
ty
+
th
/
2.
xmax
=
tx
+
tw
/
2.
return
box_list
.
BoxList
(
tf
.
transpose
(
tf
.
stack
([
ymin
,
xmin
,
ymax
,
xmax
])))
research/object_detection/core/target_assigner_test.py
View file @
f0bc684c
...
...
@@ -135,8 +135,8 @@ class TargetAssignerTest(test_case.TestCase):
(
cls_targets
,
cls_weights
,
reg_targets
,
reg_weights
,
_
)
=
result
return
(
cls_targets
,
cls_weights
,
reg_targets
,
reg_weights
)
anchor_means
=
np
.
array
([[
0.
0
,
0.
0
,
0.4
,
0.2
],
[
0.5
,
0.
5
,
1.0
,
0.8
],
anchor_means
=
np
.
array
([[
0.
25
,
0.
25
,
0.4
,
0.2
],
[
0.5
,
0.
8
,
1.0
,
0.8
],
[
0.9
,
0.5
,
0.1
,
1.0
]],
dtype
=
np
.
float32
)
groundtruth_box_corners
=
np
.
array
([[
0.0
,
0.0
,
0.5
,
0.5
],
[
0.5
,
0.5
,
0.9
,
0.9
]],
...
...
@@ -146,10 +146,10 @@ class TargetAssignerTest(test_case.TestCase):
groundtruth_labels
=
np
.
array
([[
0.0
,
1.0
],
[
0.0
,
1.0
]],
dtype
=
np
.
float32
)
exp_cls_targets
=
[[
1
],
[
1
],
[
0
]]
exp_cls_weights
=
[[
1
],
[
1
],
[
1
]]
exp_reg_targets
=
[[
0.
0
,
0.
0
,
0.5
,
0.5
],
[
0.
5
,
0.
5
,
0.
9
,
0.
9
],
exp_cls_targets
=
[[
0
,
1
],
[
0
,
1
],
[
1
,
0
]]
exp_cls_weights
=
[[
1
,
1
],
[
1
,
1
],
[
1
,
1
]]
exp_reg_targets
=
[[
0.
25
,
0.
25
,
0.5
,
0.5
],
[
0.
7
,
0.
7
,
0.
4
,
0.
4
],
[
0
,
0
,
0
,
0
]]
exp_reg_weights
=
[
1
,
1
,
0
]
...
...
@@ -157,6 +157,7 @@ class TargetAssignerTest(test_case.TestCase):
cls_weights_out
,
reg_targets_out
,
reg_weights_out
)
=
self
.
execute
(
graph_fn
,
[
anchor_means
,
groundtruth_box_corners
,
groundtruth_labels
,
predicted_labels
])
self
.
assertAllClose
(
cls_targets_out
,
exp_cls_targets
)
self
.
assertAllClose
(
cls_weights_out
,
exp_cls_weights
)
self
.
assertAllClose
(
reg_targets_out
,
exp_reg_targets
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment