Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
ResNet50_tensorflow
Commits
ef76912d
Commit
ef76912d
authored
Aug 19, 2020
by
Ronny Votel
Committed by
TF Object Detection Team
Aug 19, 2020
Browse files
Allowing for input resolutions other than 224x224 in CenterNet ResNet models.
PiperOrigin-RevId: 327521336
parent
6b2bc083
Changes
4
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
14 additions
and
10 deletions
+14
-10
research/object_detection/models/center_net_resnet_feature_extractor.py
...t_detection/models/center_net_resnet_feature_extractor.py
+4
-2
research/object_detection/models/center_net_resnet_feature_extractor_tf2_test.py
...on/models/center_net_resnet_feature_extractor_tf2_test.py
+2
-2
research/object_detection/models/center_net_resnet_v1_fpn_feature_extractor.py
...tion/models/center_net_resnet_v1_fpn_feature_extractor.py
+6
-4
research/object_detection/models/center_net_resnet_v1_fpn_feature_extractor_tf2_test.py
...ls/center_net_resnet_v1_fpn_feature_extractor_tf2_test.py
+2
-2
No files found.
research/object_detection/models/center_net_resnet_feature_extractor.py
View file @
ef76912d
...
...
@@ -46,10 +46,12 @@ class CenterNetResnetFeatureExtractor(CenterNetFeatureExtractor):
channel_means
=
channel_means
,
channel_stds
=
channel_stds
,
bgr_ordering
=
bgr_ordering
)
if
resnet_type
==
'resnet_v2_101'
:
self
.
_base_model
=
tf
.
keras
.
applications
.
ResNet101V2
(
weights
=
None
)
self
.
_base_model
=
tf
.
keras
.
applications
.
ResNet101V2
(
weights
=
None
,
include_top
=
False
)
output_layer
=
'conv5_block3_out'
elif
resnet_type
==
'resnet_v2_50'
:
self
.
_base_model
=
tf
.
keras
.
applications
.
ResNet50V2
(
weights
=
None
)
self
.
_base_model
=
tf
.
keras
.
applications
.
ResNet50V2
(
weights
=
None
,
include_top
=
False
)
output_layer
=
'conv5_block3_out'
else
:
raise
ValueError
(
'Unknown Resnet Model {}'
.
format
(
resnet_type
))
...
...
research/object_detection/models/center_net_resnet_feature_extractor_tf2_test.py
View file @
ef76912d
...
...
@@ -31,11 +31,11 @@ class CenterNetResnetFeatureExtractorTest(test_case.TestCase):
model
=
center_net_resnet_feature_extractor
.
\
CenterNetResnetFeatureExtractor
(
'resnet_v2_101'
)
def
graph_fn
():
img
=
np
.
zeros
((
8
,
224
,
224
,
3
),
dtype
=
np
.
float32
)
img
=
np
.
zeros
((
8
,
512
,
512
,
3
),
dtype
=
np
.
float32
)
processed_img
=
model
.
preprocess
(
img
)
return
model
(
processed_img
)
outputs
=
self
.
execute
(
graph_fn
,
[])
self
.
assertEqual
(
outputs
.
shape
,
(
8
,
56
,
56
,
64
))
self
.
assertEqual
(
outputs
.
shape
,
(
8
,
128
,
128
,
64
))
def
test_output_size_resnet50
(
self
):
"""Verify that shape of features returned by the backbone is correct."""
...
...
research/object_detection/models/center_net_resnet_v1_fpn_feature_extractor.py
View file @
ef76912d
...
...
@@ -71,13 +71,15 @@ class CenterNetResnetV1FpnFeatureExtractor(CenterNetFeatureExtractor):
channel_means
=
channel_means
,
channel_stds
=
channel_stds
,
bgr_ordering
=
bgr_ordering
)
if
resnet_type
==
'resnet_v1_50'
:
self
.
_base_model
=
tf
.
keras
.
applications
.
ResNet50
(
weights
=
None
)
self
.
_base_model
=
tf
.
keras
.
applications
.
ResNet50
(
weights
=
None
,
include_top
=
False
)
elif
resnet_type
==
'resnet_v1_101'
:
self
.
_base_model
=
tf
.
keras
.
applications
.
ResNet101
(
weights
=
None
)
self
.
_base_model
=
tf
.
keras
.
applications
.
ResNet101
(
weights
=
None
,
include_top
=
False
)
elif
resnet_type
==
'resnet_v1_18'
:
self
.
_base_model
=
resnet_v1
.
resnet_v1_18
(
weights
=
None
)
self
.
_base_model
=
resnet_v1
.
resnet_v1_18
(
weights
=
None
,
include_top
=
False
)
elif
resnet_type
==
'resnet_v1_34'
:
self
.
_base_model
=
resnet_v1
.
resnet_v1_34
(
weights
=
None
)
self
.
_base_model
=
resnet_v1
.
resnet_v1_34
(
weights
=
None
,
include_top
=
False
)
else
:
raise
ValueError
(
'Unknown Resnet Model {}'
.
format
(
resnet_type
))
output_layers
=
_RESNET_MODEL_OUTPUT_LAYERS
[
resnet_type
]
...
...
research/object_detection/models/center_net_resnet_v1_fpn_feature_extractor_tf2_test.py
View file @
ef76912d
...
...
@@ -40,11 +40,11 @@ class CenterNetResnetV1FpnFeatureExtractorTest(test_case.TestCase,
model
=
center_net_resnet_v1_fpn_feature_extractor
.
\
CenterNetResnetV1FpnFeatureExtractor
(
resnet_type
)
def
graph_fn
():
img
=
np
.
zeros
((
8
,
224
,
224
,
3
),
dtype
=
np
.
float32
)
img
=
np
.
zeros
((
8
,
512
,
512
,
3
),
dtype
=
np
.
float32
)
processed_img
=
model
.
preprocess
(
img
)
return
model
(
processed_img
)
self
.
assertEqual
(
self
.
execute
(
graph_fn
,
[]).
shape
,
(
8
,
56
,
56
,
64
))
self
.
assertEqual
(
self
.
execute
(
graph_fn
,
[]).
shape
,
(
8
,
128
,
128
,
64
))
if
__name__
==
'__main__'
:
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment