Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
ResNet50_tensorflow
Commits
ec55d7da
"git@developer.sourcefind.cn:OpenDAS/vision.git" did not exist on "5f74f0317e21f53a7ee5f61210e406c27f06a667"
Commit
ec55d7da
authored
Mar 28, 2022
by
Luke Wood
Committed by
A. Unique TensorFlower
Mar 28, 2022
Browse files
Internal change
PiperOrigin-RevId: 437812893
parent
74582325
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
18 additions
and
15 deletions
+18
-15
official/nlp/modeling/layers/text_layers_test.py
official/nlp/modeling/layers/text_layers_test.py
+7
-6
official/nlp/tools/export_tfhub_lib_test.py
official/nlp/tools/export_tfhub_lib_test.py
+3
-2
official/recommendation/neumf_model.py
official/recommendation/neumf_model.py
+8
-7
No files found.
official/nlp/modeling/layers/text_layers_test.py
View file @
ec55d7da
...
@@ -19,6 +19,7 @@ import tempfile
...
@@ -19,6 +19,7 @@ import tempfile
import
numpy
as
np
import
numpy
as
np
import
tensorflow
as
tf
import
tensorflow
as
tf
from
tensorflow
import
estimator
as
tf_estimator
from
sentencepiece
import
SentencePieceTrainer
from
sentencepiece
import
SentencePieceTrainer
from
official.nlp.modeling.layers
import
text_layers
from
official.nlp.modeling.layers
import
text_layers
...
@@ -120,10 +121,10 @@ class BertTokenizerTest(tf.test.TestCase):
...
@@ -120,10 +121,10 @@ class BertTokenizerTest(tf.test.TestCase):
def
model_fn
(
features
,
labels
,
mode
):
def
model_fn
(
features
,
labels
,
mode
):
del
labels
# Unused.
del
labels
# Unused.
return
tf
.
estimator
.
EstimatorSpec
(
mode
=
mode
,
return
tf
_
estimator
.
EstimatorSpec
(
mode
=
mode
,
predictions
=
features
[
"input_word_ids"
])
predictions
=
features
[
"input_word_ids"
])
estimator
=
tf
.
estimator
.
Estimator
(
model_fn
=
model_fn
)
estimator
=
tf
_
estimator
.
Estimator
(
model_fn
=
model_fn
)
outputs
=
list
(
estimator
.
predict
(
input_fn
))
outputs
=
list
(
estimator
.
predict
(
input_fn
))
self
.
assertAllEqual
(
outputs
,
np
.
array
([[
2
,
6
,
3
,
0
],
self
.
assertAllEqual
(
outputs
,
np
.
array
([[
2
,
6
,
3
,
0
],
[
2
,
4
,
5
,
3
]]))
[
2
,
4
,
5
,
3
]]))
...
@@ -231,10 +232,10 @@ class SentencepieceTokenizerTest(tf.test.TestCase):
...
@@ -231,10 +232,10 @@ class SentencepieceTokenizerTest(tf.test.TestCase):
def
model_fn
(
features
,
labels
,
mode
):
def
model_fn
(
features
,
labels
,
mode
):
del
labels
# Unused.
del
labels
# Unused.
return
tf
.
estimator
.
EstimatorSpec
(
mode
=
mode
,
return
tf
_
estimator
.
EstimatorSpec
(
mode
=
mode
,
predictions
=
features
[
"input_word_ids"
])
predictions
=
features
[
"input_word_ids"
])
estimator
=
tf
.
estimator
.
Estimator
(
model_fn
=
model_fn
)
estimator
=
tf
_
estimator
.
Estimator
(
model_fn
=
model_fn
)
outputs
=
list
(
estimator
.
predict
(
input_fn
))
outputs
=
list
(
estimator
.
predict
(
input_fn
))
self
.
assertAllEqual
(
outputs
,
np
.
array
([[
2
,
8
,
3
,
0
],
self
.
assertAllEqual
(
outputs
,
np
.
array
([[
2
,
8
,
3
,
0
],
[
2
,
12
,
3
,
0
]]))
[
2
,
12
,
3
,
0
]]))
...
@@ -537,10 +538,10 @@ class FastWordPieceBertTokenizerTest(tf.test.TestCase):
...
@@ -537,10 +538,10 @@ class FastWordPieceBertTokenizerTest(tf.test.TestCase):
def
model_fn
(
features
,
labels
,
mode
):
def
model_fn
(
features
,
labels
,
mode
):
del
labels
# Unused.
del
labels
# Unused.
return
tf
.
estimator
.
EstimatorSpec
(
mode
=
mode
,
return
tf
_
estimator
.
EstimatorSpec
(
mode
=
mode
,
predictions
=
features
[
"input_word_ids"
])
predictions
=
features
[
"input_word_ids"
])
estimator
=
tf
.
estimator
.
Estimator
(
model_fn
=
model_fn
)
estimator
=
tf
_
estimator
.
Estimator
(
model_fn
=
model_fn
)
outputs
=
list
(
estimator
.
predict
(
input_fn
))
outputs
=
list
(
estimator
.
predict
(
input_fn
))
self
.
assertAllEqual
(
outputs
,
np
.
array
([[
2
,
6
,
3
,
0
],
self
.
assertAllEqual
(
outputs
,
np
.
array
([[
2
,
6
,
3
,
0
],
[
2
,
4
,
5
,
3
]]))
[
2
,
4
,
5
,
3
]]))
...
...
official/nlp/tools/export_tfhub_lib_test.py
View file @
ec55d7da
...
@@ -20,6 +20,7 @@ import tempfile
...
@@ -20,6 +20,7 @@ import tempfile
from
absl.testing
import
parameterized
from
absl.testing
import
parameterized
import
numpy
as
np
import
numpy
as
np
import
tensorflow
as
tf
import
tensorflow
as
tf
from
tensorflow
import
estimator
as
tf_estimator
import
tensorflow_hub
as
hub
import
tensorflow_hub
as
hub
import
tensorflow_text
as
text
import
tensorflow_text
as
text
...
@@ -1024,10 +1025,10 @@ class ExportPreprocessingTest(tf.test.TestCase, parameterized.TestCase):
...
@@ -1024,10 +1025,10 @@ class ExportPreprocessingTest(tf.test.TestCase, parameterized.TestCase):
def
model_fn
(
features
,
labels
,
mode
):
def
model_fn
(
features
,
labels
,
mode
):
del
labels
# Unused.
del
labels
# Unused.
return
tf
.
estimator
.
EstimatorSpec
(
return
tf
_
estimator
.
EstimatorSpec
(
mode
=
mode
,
predictions
=
features
[
"input_word_ids"
])
mode
=
mode
,
predictions
=
features
[
"input_word_ids"
])
estimator
=
tf
.
estimator
.
Estimator
(
model_fn
=
model_fn
)
estimator
=
tf
_
estimator
.
Estimator
(
model_fn
=
model_fn
)
outputs
=
list
(
estimator
.
predict
(
input_fn
))
outputs
=
list
(
estimator
.
predict
(
input_fn
))
self
.
assertAllEqual
(
outputs
,
np
.
array
([[
2
,
6
,
3
,
0
],
[
2
,
4
,
5
,
3
]]))
self
.
assertAllEqual
(
outputs
,
np
.
array
([[
2
,
6
,
3
,
0
],
[
2
,
4
,
5
,
3
]]))
...
...
official/recommendation/neumf_model.py
View file @
ec55d7da
...
@@ -37,6 +37,7 @@ import sys
...
@@ -37,6 +37,7 @@ import sys
from
six.moves
import
xrange
# pylint: disable=redefined-builtin
from
six.moves
import
xrange
# pylint: disable=redefined-builtin
import
tensorflow
as
tf
import
tensorflow
as
tf
from
tensorflow
import
estimator
as
tf_estimator
from
typing
import
Any
,
Dict
,
Text
from
typing
import
Any
,
Dict
,
Text
from
official.recommendation
import
constants
as
rconst
from
official.recommendation
import
constants
as
rconst
...
@@ -85,7 +86,7 @@ def neumf_model_fn(features, labels, mode, params):
...
@@ -85,7 +86,7 @@ def neumf_model_fn(features, labels, mode, params):
# Softmax with the first column of zeros is equivalent to sigmoid.
# Softmax with the first column of zeros is equivalent to sigmoid.
softmax_logits
=
ncf_common
.
convert_to_softmax_logits
(
logits
)
softmax_logits
=
ncf_common
.
convert_to_softmax_logits
(
logits
)
if
mode
==
tf
.
estimator
.
ModeKeys
.
EVAL
:
if
mode
==
tf
_
estimator
.
ModeKeys
.
EVAL
:
duplicate_mask
=
tf
.
cast
(
features
[
rconst
.
DUPLICATE_MASK
],
tf
.
float32
)
duplicate_mask
=
tf
.
cast
(
features
[
rconst
.
DUPLICATE_MASK
],
tf
.
float32
)
return
_get_estimator_spec_with_metrics
(
return
_get_estimator_spec_with_metrics
(
logits
,
logits
,
...
@@ -95,7 +96,7 @@ def neumf_model_fn(features, labels, mode, params):
...
@@ -95,7 +96,7 @@ def neumf_model_fn(features, labels, mode, params):
params
[
"match_mlperf"
],
params
[
"match_mlperf"
],
use_tpu_spec
=
params
[
"use_tpu"
])
use_tpu_spec
=
params
[
"use_tpu"
])
elif
mode
==
tf
.
estimator
.
ModeKeys
.
TRAIN
:
elif
mode
==
tf
_
estimator
.
ModeKeys
.
TRAIN
:
labels
=
tf
.
cast
(
labels
,
tf
.
int32
)
labels
=
tf
.
cast
(
labels
,
tf
.
int32
)
valid_pt_mask
=
features
[
rconst
.
VALID_POINT_MASK
]
valid_pt_mask
=
features
[
rconst
.
VALID_POINT_MASK
]
...
@@ -124,7 +125,7 @@ def neumf_model_fn(features, labels, mode, params):
...
@@ -124,7 +125,7 @@ def neumf_model_fn(features, labels, mode, params):
update_ops
=
tf
.
compat
.
v1
.
get_collection
(
tf
.
compat
.
v1
.
GraphKeys
.
UPDATE_OPS
)
update_ops
=
tf
.
compat
.
v1
.
get_collection
(
tf
.
compat
.
v1
.
GraphKeys
.
UPDATE_OPS
)
train_op
=
tf
.
group
(
minimize_op
,
update_ops
)
train_op
=
tf
.
group
(
minimize_op
,
update_ops
)
return
tf
.
estimator
.
EstimatorSpec
(
mode
=
mode
,
loss
=
loss
,
train_op
=
train_op
)
return
tf
_
estimator
.
EstimatorSpec
(
mode
=
mode
,
loss
=
loss
,
train_op
=
train_op
)
else
:
else
:
raise
NotImplementedError
raise
NotImplementedError
...
@@ -260,13 +261,13 @@ def _get_estimator_spec_with_metrics(logits: tf.Tensor,
...
@@ -260,13 +261,13 @@ def _get_estimator_spec_with_metrics(logits: tf.Tensor,
match_mlperf
)
match_mlperf
)
if
use_tpu_spec
:
if
use_tpu_spec
:
return
tf
.
estimator
.
tpu
.
TPUEstimatorSpec
(
return
tf
_
estimator
.
tpu
.
TPUEstimatorSpec
(
mode
=
tf
.
estimator
.
ModeKeys
.
EVAL
,
mode
=
tf
_
estimator
.
ModeKeys
.
EVAL
,
loss
=
cross_entropy
,
loss
=
cross_entropy
,
eval_metrics
=
(
metric_fn
,
[
in_top_k
,
ndcg
,
metric_weights
]))
eval_metrics
=
(
metric_fn
,
[
in_top_k
,
ndcg
,
metric_weights
]))
return
tf
.
estimator
.
EstimatorSpec
(
return
tf
_
estimator
.
EstimatorSpec
(
mode
=
tf
.
estimator
.
ModeKeys
.
EVAL
,
mode
=
tf
_
estimator
.
ModeKeys
.
EVAL
,
loss
=
cross_entropy
,
loss
=
cross_entropy
,
eval_metric_ops
=
metric_fn
(
in_top_k
,
ndcg
,
metric_weights
))
eval_metric_ops
=
metric_fn
(
in_top_k
,
ndcg
,
metric_weights
))
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment