"vscode:/vscode.git/clone" did not exist on "fa0e559f7ce2086df58842196cfe23748f0120f6"
Commit e570fda5 authored by Gunho Park's avatar Gunho Park
Browse files

Internal change

parent 25bf4592
...@@ -26,11 +26,7 @@ class MAE(object): ...@@ -26,11 +26,7 @@ class MAE(object):
"""Mean Absolute Error(MAE) metric for basnet.""" """Mean Absolute Error(MAE) metric for basnet."""
def __init__(self): def __init__(self):
"""Constructs MAE metric class. """Constructs MAE metric class."""
Args:
"""
self.reset_states() self.reset_states()
@property @property
...@@ -55,7 +51,6 @@ class MAE(object): ...@@ -55,7 +51,6 @@ class MAE(object):
Returns: Returns:
average_mae: average MAE with float numpy. average_mae: average MAE with float numpy.
""" """
mae_total = 0.0 mae_total = 0.0
for i, (true, pred) in enumerate(zip(self._groundtruths, for i, (true, pred) in enumerate(zip(self._groundtruths,
...@@ -72,7 +67,6 @@ class MAE(object): ...@@ -72,7 +67,6 @@ class MAE(object):
def _mask_normalize(self, mask): def _mask_normalize(self, mask):
return mask/(np.amax(mask)+1e-8) return mask/(np.amax(mask)+1e-8)
def _compute_mae(self, true, pred): def _compute_mae(self, true, pred):
h, w = true.shape[0], true.shape[1] h, w = true.shape[0], true.shape[1]
mask1 = self._mask_normalize(true) mask1 = self._mask_normalize(true)
......
...@@ -26,12 +26,7 @@ class maxFscore(object): ...@@ -26,12 +26,7 @@ class maxFscore(object):
"""Maximum F-score metric for basnet.""" """Maximum F-score metric for basnet."""
def __init__(self): def __init__(self):
"""Constructs BASNet evaluation class. """Constructs BASNet evaluation class."""
Args:
"""
self.reset_states() self.reset_states()
@property @property
...@@ -76,7 +71,6 @@ class maxFscore(object): ...@@ -76,7 +71,6 @@ class maxFscore(object):
recalls = np.sum(recalls,0)/(len(self._groundtruths)+1e-8) recalls = np.sum(recalls,0)/(len(self._groundtruths)+1e-8)
f = (1+beta)*precisions*recalls/(beta*precisions+recalls+1e-8) f = (1+beta)*precisions*recalls/(beta*precisions+recalls+1e-8)
f_max = np.max(f) f_max = np.max(f)
f_max = f_max.astype(np.float32) f_max = f_max.astype(np.float32)
return f_max return f_max
...@@ -128,7 +122,6 @@ class maxFscore(object): ...@@ -128,7 +122,6 @@ class maxFscore(object):
groundtruth masks. range [0, 1] groundtruth masks. range [0, 1]
predictions : Tuple of signle Tensor [batch, width, height, 1], predictions : Tuple of signle Tensor [batch, width, height, 1],
predicted masks. range [0, 1] predicted masks. range [0, 1]
""" """
groundtruths, predictions = self._convert_to_numpy(groundtruths[0], groundtruths, predictions = self._convert_to_numpy(groundtruths[0],
predictions[0]) predictions[0])
......
...@@ -12,7 +12,6 @@ ...@@ -12,7 +12,6 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
# ============================================================================== # ==============================================================================
"""Metrics for basnet"""
# Import libraries # Import libraries
import numpy as np import numpy as np
...@@ -23,12 +22,7 @@ class relaxedFscore(object): ...@@ -23,12 +22,7 @@ class relaxedFscore(object):
"""Relaxed F-score metric for basnet.""" """Relaxed F-score metric for basnet."""
def __init__(self): def __init__(self):
"""Constructs BASNet evaluation class. """Constructs BASNet evaluation class."""
Args:
"""
self.reset_states() self.reset_states()
@property @property
...@@ -86,10 +80,8 @@ class relaxedFscore(object): ...@@ -86,10 +80,8 @@ class relaxedFscore(object):
pre, rec = self._compute_relax_pre_rec(true_xor, pred_xor, rho) pre, rec = self._compute_relax_pre_rec(true_xor, pred_xor, rho)
relax_fs[i] = (1+beta)*pre*rec/(beta*pre+rec+1e-8) relax_fs[i] = (1+beta)*pre*rec/(beta*pre+rec+1e-8)
relax_f = np.sum(relax_fs,0)/(len(self._groundtruths)+1e-8) relax_f = np.sum(relax_fs,0)/(len(self._groundtruths)+1e-8)
relax_f = relax_f.astype(np.float32) relax_f = relax_f.astype(np.float32)
return relax_f return relax_f
...@@ -134,7 +126,6 @@ class relaxedFscore(object): ...@@ -134,7 +126,6 @@ class relaxedFscore(object):
groundtruth masks. range [0, 1] groundtruth masks. range [0, 1]
predictions : Tuple of single Tensor [batch, width, height, 1], predictions : Tuple of single Tensor [batch, width, height, 1],
predicted masks. range [0, 1] predicted masks. range [0, 1]
""" """
groundtruths, predictions = self._convert_to_numpy(groundtruths[0], groundtruths, predictions = self._convert_to_numpy(groundtruths[0],
......
...@@ -27,7 +27,7 @@ class ConvBlock(tf.keras.layers.Layer): ...@@ -27,7 +27,7 @@ class ConvBlock(tf.keras.layers.Layer):
def __init__(self, def __init__(self,
filters, filters,
strides, strides,
dilation_rate, dilation_rate=1,
kernel_size=3, kernel_size=3,
kernel_initializer='VarianceScaling', kernel_initializer='VarianceScaling',
kernel_regularizer=None, kernel_regularizer=None,
......
...@@ -46,7 +46,6 @@ def build_basnet_model( ...@@ -46,7 +46,6 @@ def build_basnet_model(
norm_activation_config = model_config.norm_activation norm_activation_config = model_config.norm_activation
decoder = basnet_decoder.BASNet_Decoder( decoder = basnet_decoder.BASNet_Decoder(
input_specs=backbone.output_specs,
use_sync_bn=norm_activation_config.use_sync_bn, use_sync_bn=norm_activation_config.use_sync_bn,
norm_momentum=norm_activation_config.norm_momentum, norm_momentum=norm_activation_config.norm_momentum,
norm_epsilon=norm_activation_config.norm_epsilon, norm_epsilon=norm_activation_config.norm_epsilon,
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment