Unverified Commit dfd045e5 authored by Mark Daoust's avatar Mark Daoust Committed by GitHub
Browse files

Merge pull request #4542 from lamberta/get-started-index

Get started index
parents 9749af06 600200bf
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"name": "_index.ipynb",
"version": "0.3.2",
"views": {},
"default_view": {},
"provenance": []
}
},
"cells": [
{
"metadata": {
"id": "rX8mhOLljYeM",
"colab_type": "text"
},
"cell_type": "markdown",
"source": [
"##### Copyright 2018 The TensorFlow Authors.\n",
"\n",
"Licensed under the Apache License, Version 2.0 (the \"License\");"
]
},
{
"metadata": {
"id": "BZSlp3DAjdYf",
"colab_type": "code",
"colab": {
"autoexec": {
"startup": false,
"wait_interval": 0
}
},
"cellView": "form"
},
"cell_type": "code",
"source": [
"#@title Licensed under the Apache License, Version 2.0 (the \"License\");\n",
"# you may not use this file except in compliance with the License.\n",
"# You may obtain a copy of the License at\n",
"#\n",
"# https://www.apache.org/licenses/LICENSE-2.0\n",
"#\n",
"# Unless required by applicable law or agreed to in writing, software\n",
"# distributed under the License is distributed on an \"AS IS\" BASIS,\n",
"# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n",
"# See the License for the specific language governing permissions and\n",
"# limitations under the License."
],
"execution_count": 0,
"outputs": []
},
{
"metadata": {
"id": "3wF5wszaj97Y",
"colab_type": "text"
},
"cell_type": "markdown",
"source": [
"# Get Started with TensorFlow"
]
},
{
"metadata": {
"id": "DUNzJc4jTj6G",
"colab_type": "text"
},
"cell_type": "markdown",
"source": [
"<table align=\"left\"><td>\n",
"<a target=\"_blank\" href=\"https://colab.sandbox.google.com/github/tensorflow/models/blob/master/samples/core/get_started/_index.ipynb\">\n",
" <img src=\"https://www.tensorflow.org/images/colab_logo_32px.png\" />Run in Google Colab</a> \n",
"</td><td>\n",
"<a target=\"_blank\" href=\"https://github.com/tensorflow/models/blob/master/samples/core/get_started/_index.ipynb\"><img width=32px src=\"https://www.tensorflow.org/images/GitHub-Mark-32px.png\" />View source on Github</a></td></table>"
]
},
{
"metadata": {
"id": "hiH7AC-NTniF",
"colab_type": "text"
},
"cell_type": "markdown",
"source": [
"This is a [Google Colaboratory](https://colab.sandbox.google.com/notebooks/welcome.ipynb) notebook file. Python programs are run directly in the browser—a great way to learn and use TensorFlow. To run the Colab notebook:\n",
"\n",
"1. Connect to a Python runtime: At the top-right of the menu bar, select *CONNECT*.\n",
"2. Run all the notebook code cells: Select *Runtime* > *Run all*.\n",
"\n",
"For more examples and guides (including details for this program), see [Get Started with TensorFlow](https://www.tensorflow.org/get_started/).\n",
"\n",
"Let's get started, import the TensorFlow library into your program:"
]
},
{
"metadata": {
"id": "0trJmd6DjqBZ",
"colab_type": "code",
"colab": {
"autoexec": {
"startup": false,
"wait_interval": 0
}
}
},
"cell_type": "code",
"source": [
"import tensorflow as tf"
],
"execution_count": 0,
"outputs": []
},
{
"metadata": {
"id": "7NAbSZiaoJ4z",
"colab_type": "text"
},
"cell_type": "markdown",
"source": [
"Load and prepare the [MNIST](http://yann.lecun.com/exdb/mnist/) dataset. Convert the samples from integers to floating-point numbers:"
]
},
{
"metadata": {
"id": "7FP5258xjs-v",
"colab_type": "code",
"colab": {
"autoexec": {
"startup": false,
"wait_interval": 0
}
}
},
"cell_type": "code",
"source": [
"mnist = tf.keras.datasets.mnist\n",
"\n",
"(x_train, y_train), (x_test, y_test) = mnist.load_data()\n",
"x_train, x_test = x_train / 255.0, x_test / 255.0"
],
"execution_count": 0,
"outputs": []
},
{
"metadata": {
"id": "BPZ68wASog_I",
"colab_type": "text"
},
"cell_type": "markdown",
"source": [
"Build the `tf.keras` model by stacking layers. Select an optimizer and loss function used for training:"
]
},
{
"metadata": {
"id": "h3IKyzTCDNGo",
"colab_type": "code",
"colab": {
"autoexec": {
"startup": false,
"wait_interval": 0
}
}
},
"cell_type": "code",
"source": [
"model = tf.keras.models.Sequential([\n",
" tf.keras.layers.Flatten(),\n",
" tf.keras.layers.Dense(512, activation=tf.nn.relu),\n",
" tf.keras.layers.Dropout(0.2),\n",
" tf.keras.layers.Dense(10, activation=tf.nn.softmax)\n",
"])\n",
"\n",
"model.compile(optimizer='adam',\n",
" loss='sparse_categorical_crossentropy',\n",
" metrics=['accuracy'])"
],
"execution_count": 0,
"outputs": []
},
{
"metadata": {
"id": "ix4mEL65on-w",
"colab_type": "text"
},
"cell_type": "markdown",
"source": [
"Train and evaluate model:"
]
},
{
"metadata": {
"id": "F7dTAzgHDUh7",
"colab_type": "code",
"colab": {
"autoexec": {
"startup": false,
"wait_interval": 0
}
}
},
"cell_type": "code",
"source": [
"model.fit(x_train, y_train, epochs=5)\n",
"\n",
"model.evaluate(x_test, y_test)"
],
"execution_count": 0,
"outputs": []
},
{
"metadata": {
"id": "T4JfEh7kvx6m",
"colab_type": "text"
},
"cell_type": "markdown",
"source": [
"You’ve now trained an image classifier with ~98% accuracy on this dataset. See [Get Started with TensorFlow](https://www.tensorflow.org/get_started/) to learn more."
]
}
]
}
\ No newline at end of file
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment