Commit dc6c341d authored by A. Unique TensorFlower's avatar A. Unique TensorFlower
Browse files

Merge pull request #10197 from PurdueDualityLab:detection_generator_pr_2

PiperOrigin-RevId: 395505920
parents a9c5469d c4a9fa69
......@@ -15,7 +15,7 @@
# Lint as: python3
"""Contains definitions of Darknet Backbone Networks.
The models are inspired by ResNet, and CSPNet
The models are inspired by ResNet and CSPNet.
Residual networks (ResNets) were proposed in:
[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun
......
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Contains common building blocks for yolo layer (detection layer)."""
import tensorflow as tf
from official.vision.beta.projects.yolo.ops import box_ops
@tf.keras.utils.register_keras_serializable(package='yolo')
class YoloLayer(tf.keras.Model):
"""Yolo layer (detection generator)."""
def __init__(self,
masks,
anchors,
classes,
iou_thresh=0.0,
ignore_thresh=0.7,
truth_thresh=1.0,
nms_thresh=0.6,
max_delta=10.0,
loss_type='ciou',
iou_normalizer=1.0,
cls_normalizer=1.0,
obj_normalizer=1.0,
use_scaled_loss=False,
darknet=None,
pre_nms_points=5000,
label_smoothing=0.0,
max_boxes=200,
new_cords=False,
path_scale=None,
scale_xy=None,
nms_type='greedy',
objectness_smooth=False,
**kwargs):
"""Parameters for the loss functions used at each detection head output.
Args:
masks: `List[int]` for the output level that this specific model output
level.
anchors: `List[List[int]]` for the anchor boxes that are used in the
model.
classes: `int` for the number of classes.
iou_thresh: `float` to use many anchors per object if IoU(Obj, Anchor) >
iou_thresh.
ignore_thresh: `float` for the IOU value over which the loss is not
propagated, and a detection is assumed to have been made.
truth_thresh: `float` for the IOU value over which the loss is propagated
despite a detection being made'.
nms_thresh: `float` for the minimum IOU value for an overlap.
max_delta: gradient clipping to apply to the box loss.
loss_type: `str` for the typeof iou loss to use with in {ciou, diou,
giou, iou}.
iou_normalizer: `float` for how much to scale the loss on the IOU or the
boxes.
cls_normalizer: `float` for how much to scale the loss on the classes.
obj_normalizer: `float` for how much to scale loss on the detection map.
use_scaled_loss: `bool` for whether to use the scaled loss
or the traditional loss.
darknet: `bool` for whether to use the DarkNet or PyTorch loss function
implementation.
pre_nms_points: `int` number of top candidate detections per class before
NMS.
label_smoothing: `float` for how much to smooth the loss on the classes.
max_boxes: `int` for the maximum number of boxes retained over all
classes.
new_cords: `bool` for using the ScaledYOLOv4 coordinates.
path_scale: `dict` for the size of the input tensors. Defaults to
precalulated values from the `mask`.
scale_xy: dictionary `float` values inidcating how far each pixel can see
outside of its containment of 1.0. a value of 1.2 indicates there is a
20% extended radius around each pixel that this specific pixel can
predict values for a center at. the center can range from 0 - value/2
to 1 + value/2, this value is set in the yolo filter, and resused here.
there should be one value for scale_xy for each level from min_level to
max_level.
nms_type: `str` for which non max suppression to use.
objectness_smooth: `float` for how much to smooth the loss on the
detection map.
**kwargs: Addtional keyword arguments.
Return:
loss: `float` for the actual loss.
box_loss: `float` loss on the boxes used for metrics.
conf_loss: `float` loss on the confidence used for metrics.
class_loss: `float` loss on the classes used for metrics.
avg_iou: `float` metric for the average iou between predictions
and ground truth.
avg_obj: `float` metric for the average confidence of the model
for predictions.
recall50: `float` metric for how accurate the model is.
precision50: `float` metric for how precise the model is.
"""
super().__init__(**kwargs)
self._masks = masks
self._anchors = anchors
self._thresh = iou_thresh
self._ignore_thresh = ignore_thresh
self._truth_thresh = truth_thresh
self._iou_normalizer = iou_normalizer
self._cls_normalizer = cls_normalizer
self._obj_normalizer = obj_normalizer
self._objectness_smooth = objectness_smooth
self._nms_thresh = nms_thresh
self._max_boxes = max_boxes
self._max_delta = max_delta
self._classes = classes
self._loss_type = loss_type
self._use_scaled_loss = use_scaled_loss
self._darknet = darknet
self._pre_nms_points = pre_nms_points
self._label_smoothing = label_smoothing
self._keys = list(masks.keys())
self._len_keys = len(self._keys)
self._new_cords = new_cords
self._path_scale = path_scale or {
key: 2**int(key) for key, _ in masks.items()
}
self._nms_types = {
'greedy': 1,
'iou': 2,
'giou': 3,
'ciou': 4,
'diou': 5,
'class_independent': 6,
'weighted_diou': 7
}
self._nms_type = self._nms_types[nms_type]
self._scale_xy = scale_xy or {key: 1.0 for key, _ in masks.items()}
self._generator = {}
self._len_mask = {}
for key in self._keys:
anchors = [self._anchors[mask] for mask in self._masks[key]]
self._generator[key] = self.get_generators(anchors, self._path_scale[key], # pylint: disable=assignment-from-none
key)
self._len_mask[key] = len(self._masks[key])
return
def get_generators(self, anchors, path_scale, path_key):
return None
def rm_nan_inf(self, x, val=0.0):
x = tf.where(tf.math.is_nan(x), tf.cast(val, dtype=x.dtype), x)
x = tf.where(tf.math.is_inf(x), tf.cast(val, dtype=x.dtype), x)
return x
def parse_prediction_path(self, key, inputs):
shape = inputs.get_shape().as_list()
height, width = shape[1], shape[2]
len_mask = self._len_mask[key]
# reshape the yolo output to (batchsize,
# width,
# height,
# number_anchors,
# remaining_points)
data = tf.reshape(inputs, [-1, height, width, len_mask, self._classes + 5])
# split the yolo detections into boxes, object score map, classes
boxes, obns_scores, class_scores = tf.split(
data, [4, 1, self._classes], axis=-1)
# determine the number of classes
classes = class_scores.get_shape().as_list()[-1]
# convert boxes from yolo(x, y, w. h) to tensorflow(ymin, xmin, ymax, xmax)
boxes = box_ops.xcycwh_to_yxyx(boxes)
# activate and detection map
obns_scores = tf.math.sigmoid(obns_scores)
# threshold the detection map
obns_mask = tf.cast(obns_scores > self._thresh, obns_scores.dtype)
# convert detection map to class detection probabailities
class_scores = tf.math.sigmoid(class_scores) * obns_mask * obns_scores
class_scores *= tf.cast(class_scores > self._thresh, class_scores.dtype)
fill = height * width * len_mask
# platten predictions to [batchsize, N, -1] for non max supression
boxes = tf.reshape(boxes, [-1, fill, 4])
class_scores = tf.reshape(class_scores, [-1, fill, classes])
obns_scores = tf.reshape(obns_scores, [-1, fill])
return obns_scores, boxes, class_scores
def call(self, inputs):
boxes = []
class_scores = []
object_scores = []
levels = list(inputs.keys())
min_level = int(min(levels))
max_level = int(max(levels))
# aggregare boxes over each scale
for i in range(min_level, max_level + 1):
key = str(i)
object_scores_, boxes_, class_scores_ = self.parse_prediction_path(
key, inputs[key])
boxes.append(boxes_)
class_scores.append(class_scores_)
object_scores.append(object_scores_)
# colate all predicitons
boxes = tf.concat(boxes, axis=1)
object_scores = tf.keras.backend.concatenate(object_scores, axis=1)
class_scores = tf.keras.backend.concatenate(class_scores, axis=1)
# greedy NMS
boxes = tf.cast(boxes, dtype=tf.float32)
class_scores = tf.cast(class_scores, dtype=tf.float32)
nms_items = tf.image.combined_non_max_suppression(
tf.expand_dims(boxes, axis=-2),
class_scores,
self._pre_nms_points,
self._max_boxes,
iou_threshold=self._nms_thresh,
score_threshold=self._thresh)
# cast the boxes and predicitons abck to original datatype
boxes = tf.cast(nms_items.nmsed_boxes, object_scores.dtype)
class_scores = tf.cast(nms_items.nmsed_classes, object_scores.dtype)
object_scores = tf.cast(nms_items.nmsed_scores, object_scores.dtype)
# compute the number of valid detections
num_detections = tf.math.reduce_sum(tf.math.ceil(object_scores), axis=-1)
# format and return
return {
'bbox': boxes,
'classes': class_scores,
'confidence': object_scores,
'num_detections': num_detections,
}
@property
def losses(self):
"""Generates a dictionary of losses to apply to each path.
Done in the detection generator because all parameters are the same
across both loss and detection generator.
"""
return None
def get_config(self):
return {
'masks': dict(self._masks),
'anchors': [list(a) for a in self._anchors],
'thresh': self._thresh,
'max_boxes': self._max_boxes,
}
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for yolo detection generator."""
from absl.testing import parameterized
import tensorflow as tf
from official.vision.beta.projects.yolo.modeling.layers import detection_generator as dg
class YoloDecoderTest(parameterized.TestCase, tf.test.TestCase):
@parameterized.parameters(
(True),
(False),
)
def test_network_creation(self, nms):
"""Test creation of ResNet family models."""
tf.keras.backend.set_image_data_format('channels_last')
input_shape = {
'3': [1, 52, 52, 255],
'4': [1, 26, 26, 255],
'5': [1, 13, 13, 255]
}
classes = 80
masks = {'3': [0, 1, 2], '4': [3, 4, 5], '5': [6, 7, 8]}
anchors = [[12.0, 19.0], [31.0, 46.0], [96.0, 54.0], [46.0, 114.0],
[133.0, 127.0], [79.0, 225.0], [301.0, 150.0], [172.0, 286.0],
[348.0, 340.0]]
layer = dg.YoloLayer(masks, anchors, classes, max_boxes=10)
inputs = {}
for key in input_shape:
inputs[key] = tf.ones(input_shape[key], dtype=tf.float32)
endpoints = layer(inputs)
boxes = endpoints['bbox']
classes = endpoints['classes']
self.assertAllEqual(boxes.shape.as_list(), [1, 10, 4])
self.assertAllEqual(classes.shape.as_list(), [1, 10])
if __name__ == '__main__':
tf.test.main()
......@@ -14,7 +14,6 @@
# Lint as: python3
"""Contains common building blocks for yolo neural networks."""
from typing import Callable, List
import tensorflow as tf
from official.modeling import tf_utils
......@@ -549,7 +548,7 @@ class CSPRoute(tf.keras.layers.Layer):
Args:
filters: integer for output depth, or the number of features to learn
filter_scale: integer dicating (filters//2) or the number of filters in
filter_scale: integer dictating (filters//2) or the number of filters in
the partial feature stack.
activation: string for activation function to use in layer.
kernel_initializer: string to indicate which function to use to
......@@ -676,8 +675,8 @@ class CSPConnect(tf.keras.layers.Layer):
"""Initializer for CSPConnect block.
Args:
filters: integer for output depth, or the number of features to learn
filter_scale: integer dicating (filters//2) or the number of filters in
filters: integer for output depth, or the number of features to learn.
filter_scale: integer dictating (filters//2) or the number of filters in
the partial feature stack.
drop_final: `bool`, whether to drop final conv layer.
drop_first: `bool`, whether to drop first conv layer.
......@@ -801,7 +800,7 @@ class CSPStack(tf.keras.layers.Layer):
model_to_wrap: callable Model or a list of callable objects that will
process the output of CSPRoute, and be input into CSPConnect.
list will be called sequentially.
filter_scale: integer dicating (filters//2) or the number of filters in
filter_scale: integer dictating (filters//2) or the number of filters in
the partial feature stack.
activation: string for activation function to use in layer.
kernel_initializer: string to indicate which function to use to initialize
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment