".github/git@developer.sourcefind.cn:change/sglang.git" did not exist on "d645ae90a3f538c72baec8bbf312388c22e25eae"
Commit dc6c341d authored by A. Unique TensorFlower's avatar A. Unique TensorFlower
Browse files

Merge pull request #10197 from PurdueDualityLab:detection_generator_pr_2

PiperOrigin-RevId: 395505920
parents a9c5469d c4a9fa69
...@@ -15,7 +15,7 @@ ...@@ -15,7 +15,7 @@
# Lint as: python3 # Lint as: python3
"""Contains definitions of Darknet Backbone Networks. """Contains definitions of Darknet Backbone Networks.
The models are inspired by ResNet, and CSPNet The models are inspired by ResNet and CSPNet.
Residual networks (ResNets) were proposed in: Residual networks (ResNets) were proposed in:
[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun [1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun
......
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Contains common building blocks for yolo layer (detection layer)."""
import tensorflow as tf
from official.vision.beta.projects.yolo.ops import box_ops
@tf.keras.utils.register_keras_serializable(package='yolo')
class YoloLayer(tf.keras.Model):
"""Yolo layer (detection generator)."""
def __init__(self,
masks,
anchors,
classes,
iou_thresh=0.0,
ignore_thresh=0.7,
truth_thresh=1.0,
nms_thresh=0.6,
max_delta=10.0,
loss_type='ciou',
iou_normalizer=1.0,
cls_normalizer=1.0,
obj_normalizer=1.0,
use_scaled_loss=False,
darknet=None,
pre_nms_points=5000,
label_smoothing=0.0,
max_boxes=200,
new_cords=False,
path_scale=None,
scale_xy=None,
nms_type='greedy',
objectness_smooth=False,
**kwargs):
"""Parameters for the loss functions used at each detection head output.
Args:
masks: `List[int]` for the output level that this specific model output
level.
anchors: `List[List[int]]` for the anchor boxes that are used in the
model.
classes: `int` for the number of classes.
iou_thresh: `float` to use many anchors per object if IoU(Obj, Anchor) >
iou_thresh.
ignore_thresh: `float` for the IOU value over which the loss is not
propagated, and a detection is assumed to have been made.
truth_thresh: `float` for the IOU value over which the loss is propagated
despite a detection being made'.
nms_thresh: `float` for the minimum IOU value for an overlap.
max_delta: gradient clipping to apply to the box loss.
loss_type: `str` for the typeof iou loss to use with in {ciou, diou,
giou, iou}.
iou_normalizer: `float` for how much to scale the loss on the IOU or the
boxes.
cls_normalizer: `float` for how much to scale the loss on the classes.
obj_normalizer: `float` for how much to scale loss on the detection map.
use_scaled_loss: `bool` for whether to use the scaled loss
or the traditional loss.
darknet: `bool` for whether to use the DarkNet or PyTorch loss function
implementation.
pre_nms_points: `int` number of top candidate detections per class before
NMS.
label_smoothing: `float` for how much to smooth the loss on the classes.
max_boxes: `int` for the maximum number of boxes retained over all
classes.
new_cords: `bool` for using the ScaledYOLOv4 coordinates.
path_scale: `dict` for the size of the input tensors. Defaults to
precalulated values from the `mask`.
scale_xy: dictionary `float` values inidcating how far each pixel can see
outside of its containment of 1.0. a value of 1.2 indicates there is a
20% extended radius around each pixel that this specific pixel can
predict values for a center at. the center can range from 0 - value/2
to 1 + value/2, this value is set in the yolo filter, and resused here.
there should be one value for scale_xy for each level from min_level to
max_level.
nms_type: `str` for which non max suppression to use.
objectness_smooth: `float` for how much to smooth the loss on the
detection map.
**kwargs: Addtional keyword arguments.
Return:
loss: `float` for the actual loss.
box_loss: `float` loss on the boxes used for metrics.
conf_loss: `float` loss on the confidence used for metrics.
class_loss: `float` loss on the classes used for metrics.
avg_iou: `float` metric for the average iou between predictions
and ground truth.
avg_obj: `float` metric for the average confidence of the model
for predictions.
recall50: `float` metric for how accurate the model is.
precision50: `float` metric for how precise the model is.
"""
super().__init__(**kwargs)
self._masks = masks
self._anchors = anchors
self._thresh = iou_thresh
self._ignore_thresh = ignore_thresh
self._truth_thresh = truth_thresh
self._iou_normalizer = iou_normalizer
self._cls_normalizer = cls_normalizer
self._obj_normalizer = obj_normalizer
self._objectness_smooth = objectness_smooth
self._nms_thresh = nms_thresh
self._max_boxes = max_boxes
self._max_delta = max_delta
self._classes = classes
self._loss_type = loss_type
self._use_scaled_loss = use_scaled_loss
self._darknet = darknet
self._pre_nms_points = pre_nms_points
self._label_smoothing = label_smoothing
self._keys = list(masks.keys())
self._len_keys = len(self._keys)
self._new_cords = new_cords
self._path_scale = path_scale or {
key: 2**int(key) for key, _ in masks.items()
}
self._nms_types = {
'greedy': 1,
'iou': 2,
'giou': 3,
'ciou': 4,
'diou': 5,
'class_independent': 6,
'weighted_diou': 7
}
self._nms_type = self._nms_types[nms_type]
self._scale_xy = scale_xy or {key: 1.0 for key, _ in masks.items()}
self._generator = {}
self._len_mask = {}
for key in self._keys:
anchors = [self._anchors[mask] for mask in self._masks[key]]
self._generator[key] = self.get_generators(anchors, self._path_scale[key], # pylint: disable=assignment-from-none
key)
self._len_mask[key] = len(self._masks[key])
return
def get_generators(self, anchors, path_scale, path_key):
return None
def rm_nan_inf(self, x, val=0.0):
x = tf.where(tf.math.is_nan(x), tf.cast(val, dtype=x.dtype), x)
x = tf.where(tf.math.is_inf(x), tf.cast(val, dtype=x.dtype), x)
return x
def parse_prediction_path(self, key, inputs):
shape = inputs.get_shape().as_list()
height, width = shape[1], shape[2]
len_mask = self._len_mask[key]
# reshape the yolo output to (batchsize,
# width,
# height,
# number_anchors,
# remaining_points)
data = tf.reshape(inputs, [-1, height, width, len_mask, self._classes + 5])
# split the yolo detections into boxes, object score map, classes
boxes, obns_scores, class_scores = tf.split(
data, [4, 1, self._classes], axis=-1)
# determine the number of classes
classes = class_scores.get_shape().as_list()[-1]
# convert boxes from yolo(x, y, w. h) to tensorflow(ymin, xmin, ymax, xmax)
boxes = box_ops.xcycwh_to_yxyx(boxes)
# activate and detection map
obns_scores = tf.math.sigmoid(obns_scores)
# threshold the detection map
obns_mask = tf.cast(obns_scores > self._thresh, obns_scores.dtype)
# convert detection map to class detection probabailities
class_scores = tf.math.sigmoid(class_scores) * obns_mask * obns_scores
class_scores *= tf.cast(class_scores > self._thresh, class_scores.dtype)
fill = height * width * len_mask
# platten predictions to [batchsize, N, -1] for non max supression
boxes = tf.reshape(boxes, [-1, fill, 4])
class_scores = tf.reshape(class_scores, [-1, fill, classes])
obns_scores = tf.reshape(obns_scores, [-1, fill])
return obns_scores, boxes, class_scores
def call(self, inputs):
boxes = []
class_scores = []
object_scores = []
levels = list(inputs.keys())
min_level = int(min(levels))
max_level = int(max(levels))
# aggregare boxes over each scale
for i in range(min_level, max_level + 1):
key = str(i)
object_scores_, boxes_, class_scores_ = self.parse_prediction_path(
key, inputs[key])
boxes.append(boxes_)
class_scores.append(class_scores_)
object_scores.append(object_scores_)
# colate all predicitons
boxes = tf.concat(boxes, axis=1)
object_scores = tf.keras.backend.concatenate(object_scores, axis=1)
class_scores = tf.keras.backend.concatenate(class_scores, axis=1)
# greedy NMS
boxes = tf.cast(boxes, dtype=tf.float32)
class_scores = tf.cast(class_scores, dtype=tf.float32)
nms_items = tf.image.combined_non_max_suppression(
tf.expand_dims(boxes, axis=-2),
class_scores,
self._pre_nms_points,
self._max_boxes,
iou_threshold=self._nms_thresh,
score_threshold=self._thresh)
# cast the boxes and predicitons abck to original datatype
boxes = tf.cast(nms_items.nmsed_boxes, object_scores.dtype)
class_scores = tf.cast(nms_items.nmsed_classes, object_scores.dtype)
object_scores = tf.cast(nms_items.nmsed_scores, object_scores.dtype)
# compute the number of valid detections
num_detections = tf.math.reduce_sum(tf.math.ceil(object_scores), axis=-1)
# format and return
return {
'bbox': boxes,
'classes': class_scores,
'confidence': object_scores,
'num_detections': num_detections,
}
@property
def losses(self):
"""Generates a dictionary of losses to apply to each path.
Done in the detection generator because all parameters are the same
across both loss and detection generator.
"""
return None
def get_config(self):
return {
'masks': dict(self._masks),
'anchors': [list(a) for a in self._anchors],
'thresh': self._thresh,
'max_boxes': self._max_boxes,
}
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for yolo detection generator."""
from absl.testing import parameterized
import tensorflow as tf
from official.vision.beta.projects.yolo.modeling.layers import detection_generator as dg
class YoloDecoderTest(parameterized.TestCase, tf.test.TestCase):
@parameterized.parameters(
(True),
(False),
)
def test_network_creation(self, nms):
"""Test creation of ResNet family models."""
tf.keras.backend.set_image_data_format('channels_last')
input_shape = {
'3': [1, 52, 52, 255],
'4': [1, 26, 26, 255],
'5': [1, 13, 13, 255]
}
classes = 80
masks = {'3': [0, 1, 2], '4': [3, 4, 5], '5': [6, 7, 8]}
anchors = [[12.0, 19.0], [31.0, 46.0], [96.0, 54.0], [46.0, 114.0],
[133.0, 127.0], [79.0, 225.0], [301.0, 150.0], [172.0, 286.0],
[348.0, 340.0]]
layer = dg.YoloLayer(masks, anchors, classes, max_boxes=10)
inputs = {}
for key in input_shape:
inputs[key] = tf.ones(input_shape[key], dtype=tf.float32)
endpoints = layer(inputs)
boxes = endpoints['bbox']
classes = endpoints['classes']
self.assertAllEqual(boxes.shape.as_list(), [1, 10, 4])
self.assertAllEqual(classes.shape.as_list(), [1, 10])
if __name__ == '__main__':
tf.test.main()
...@@ -14,7 +14,6 @@ ...@@ -14,7 +14,6 @@
# Lint as: python3 # Lint as: python3
"""Contains common building blocks for yolo neural networks.""" """Contains common building blocks for yolo neural networks."""
from typing import Callable, List from typing import Callable, List
import tensorflow as tf import tensorflow as tf
from official.modeling import tf_utils from official.modeling import tf_utils
...@@ -549,7 +548,7 @@ class CSPRoute(tf.keras.layers.Layer): ...@@ -549,7 +548,7 @@ class CSPRoute(tf.keras.layers.Layer):
Args: Args:
filters: integer for output depth, or the number of features to learn filters: integer for output depth, or the number of features to learn
filter_scale: integer dicating (filters//2) or the number of filters in filter_scale: integer dictating (filters//2) or the number of filters in
the partial feature stack. the partial feature stack.
activation: string for activation function to use in layer. activation: string for activation function to use in layer.
kernel_initializer: string to indicate which function to use to kernel_initializer: string to indicate which function to use to
...@@ -676,8 +675,8 @@ class CSPConnect(tf.keras.layers.Layer): ...@@ -676,8 +675,8 @@ class CSPConnect(tf.keras.layers.Layer):
"""Initializer for CSPConnect block. """Initializer for CSPConnect block.
Args: Args:
filters: integer for output depth, or the number of features to learn filters: integer for output depth, or the number of features to learn.
filter_scale: integer dicating (filters//2) or the number of filters in filter_scale: integer dictating (filters//2) or the number of filters in
the partial feature stack. the partial feature stack.
drop_final: `bool`, whether to drop final conv layer. drop_final: `bool`, whether to drop final conv layer.
drop_first: `bool`, whether to drop first conv layer. drop_first: `bool`, whether to drop first conv layer.
...@@ -801,7 +800,7 @@ class CSPStack(tf.keras.layers.Layer): ...@@ -801,7 +800,7 @@ class CSPStack(tf.keras.layers.Layer):
model_to_wrap: callable Model or a list of callable objects that will model_to_wrap: callable Model or a list of callable objects that will
process the output of CSPRoute, and be input into CSPConnect. process the output of CSPRoute, and be input into CSPConnect.
list will be called sequentially. list will be called sequentially.
filter_scale: integer dicating (filters//2) or the number of filters in filter_scale: integer dictating (filters//2) or the number of filters in
the partial feature stack. the partial feature stack.
activation: string for activation function to use in layer. activation: string for activation function to use in layer.
kernel_initializer: string to indicate which function to use to initialize kernel_initializer: string to indicate which function to use to initialize
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment