Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
ResNet50_tensorflow
Commits
dbd74385
Commit
dbd74385
authored
Apr 16, 2020
by
Le Hou
Committed by
A. Unique TensorFlower
Apr 16, 2020
Browse files
Add ReZero support (
https://arxiv.org/abs/2003.04887
)
PiperOrigin-RevId: 306971008
parent
b523f160
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
353 additions
and
1 deletion
+353
-1
official/nlp/modeling/layers/__init__.py
official/nlp/modeling/layers/__init__.py
+2
-1
official/nlp/modeling/layers/rezero_transformer.py
official/nlp/modeling/layers/rezero_transformer.py
+245
-0
official/nlp/modeling/layers/rezero_transformer_test.py
official/nlp/modeling/layers/rezero_transformer_test.py
+106
-0
No files found.
official/nlp/modeling/layers/__init__.py
View file @
dbd74385
# Copyright 20
19
The TensorFlow Authors. All Rights Reserved.
# Copyright 20
20
The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
...
...
@@ -18,6 +18,7 @@ from official.nlp.modeling.layers.dense_einsum import DenseEinsum
from
official.nlp.modeling.layers.masked_softmax
import
MaskedSoftmax
from
official.nlp.modeling.layers.on_device_embedding
import
OnDeviceEmbedding
from
official.nlp.modeling.layers.position_embedding
import
PositionEmbedding
from
official.nlp.modeling.layers.rezero_transformer
import
ReZeroTransformer
from
official.nlp.modeling.layers.self_attention_mask
import
SelfAttentionMask
from
official.nlp.modeling.layers.transformer
import
Transformer
from
official.nlp.modeling.layers.transformer_scaffold
import
TransformerScaffold
official/nlp/modeling/layers/rezero_transformer.py
0 → 100644
View file @
dbd74385
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Keras-based rezero-transformer block layer (Transformer with ReZero)."""
# pylint: disable=g-classes-have-attributes
from
__future__
import
absolute_import
from
__future__
import
division
# from __future__ import google_type_annotations
from
__future__
import
print_function
import
gin
import
tensorflow
as
tf
from
official.nlp.modeling.layers
import
attention
from
official.nlp.modeling.layers
import
dense_einsum
@
tf
.
keras
.
utils
.
register_keras_serializable
(
package
=
"Text"
)
@
gin
.
configurable
class
ReZeroTransformer
(
tf
.
keras
.
layers
.
Layer
):
"""Transformer layer with ReZero.
This layer implements the Transformer from "Attention Is All You Need".
(https://arxiv.org/abs/1706.03762).
The residual connection implements the ReZero method.
(https://arxiv.org/abs/2003.04887)
Arguments:
num_attention_heads: Number of attention heads.
intermediate_size: Size of the intermediate layer.
intermediate_activation: Activation for the intermediate layer.
dropout_rate: Dropout probability for the post-attention and output dropout.
attention_dropout_rate: Dropout probability for within the attention layer.
kernel_initializer: Initializer for dense layer kernels.
bias_initializer: Initializer for dense layer biases.
kernel_regularizer: Regularizer for dense layer kernels.
bias_regularizer: Regularizer for dense layer biases.
activity_regularizer: Regularizer for dense layer activity.
kernel_constraint: Constraint for dense layer kernels.
bias_constraint: Constraint for dense layer kernels.
use_layer_norm: If add layer_norm on top of the ReZero.
"""
def
__init__
(
self
,
num_attention_heads
,
intermediate_size
,
intermediate_activation
,
dropout_rate
=
0.0
,
attention_dropout_rate
=
0.0
,
kernel_initializer
=
"glorot_uniform"
,
bias_initializer
=
"zeros"
,
kernel_regularizer
=
None
,
bias_regularizer
=
None
,
activity_regularizer
=
None
,
kernel_constraint
=
None
,
bias_constraint
=
None
,
use_layer_norm
=
False
,
**
kwargs
):
super
(
ReZeroTransformer
,
self
).
__init__
(
**
kwargs
)
self
.
_num_heads
=
num_attention_heads
self
.
_intermediate_size
=
intermediate_size
self
.
_intermediate_activation
=
intermediate_activation
self
.
_attention_dropout_rate
=
attention_dropout_rate
self
.
_dropout_rate
=
dropout_rate
self
.
_kernel_initializer
=
tf
.
keras
.
initializers
.
get
(
kernel_initializer
)
self
.
_bias_initializer
=
tf
.
keras
.
initializers
.
get
(
bias_initializer
)
self
.
_kernel_regularizer
=
tf
.
keras
.
regularizers
.
get
(
kernel_regularizer
)
self
.
_bias_regularizer
=
tf
.
keras
.
regularizers
.
get
(
bias_regularizer
)
self
.
_kernel_constraint
=
tf
.
keras
.
constraints
.
get
(
kernel_constraint
)
self
.
_bias_constraint
=
tf
.
keras
.
constraints
.
get
(
bias_constraint
)
self
.
_use_layer_norm
=
use_layer_norm
def
build
(
self
,
input_shape
):
input_tensor
=
input_shape
[
0
]
if
len
(
input_shape
)
==
2
else
input_shape
input_tensor_shape
=
tf
.
TensorShape
(
input_tensor
)
if
len
(
input_tensor_shape
)
!=
3
:
raise
ValueError
(
"TransformerLayer expects a three-dimensional input of "
"shape [batch, sequence, width]."
)
batch_size
,
sequence_length
,
hidden_size
=
input_tensor_shape
if
len
(
input_shape
)
==
2
:
mask_tensor_shape
=
tf
.
TensorShape
(
input_shape
[
1
])
expected_mask_tensor_shape
=
tf
.
TensorShape
(
[
batch_size
,
sequence_length
,
sequence_length
])
if
not
expected_mask_tensor_shape
.
is_compatible_with
(
mask_tensor_shape
):
raise
ValueError
(
"When passing a mask tensor to TransformerLayer, the "
"mask tensor must be of shape [batch, "
"sequence_length, sequence_length] (here %s). Got a "
"mask tensor of shape %s."
%
(
expected_mask_tensor_shape
,
mask_tensor_shape
))
if
hidden_size
%
self
.
_num_heads
!=
0
:
raise
ValueError
(
"The input size (%d) is not a multiple of the number of attention "
"heads (%d)"
%
(
hidden_size
,
self
.
_num_heads
))
self
.
_attention_head_size
=
int
(
hidden_size
//
self
.
_num_heads
)
self
.
_attention_layer
=
attention
.
MultiHeadAttention
(
num_heads
=
self
.
_num_heads
,
head_size
=
self
.
_attention_head_size
,
dropout_rate
=
self
.
_attention_dropout_rate
,
kernel_initializer
=
self
.
_kernel_initializer
,
bias_initializer
=
self
.
_bias_initializer
,
kernel_regularizer
=
self
.
_kernel_regularizer
,
bias_regularizer
=
self
.
_bias_regularizer
,
activity_regularizer
=
self
.
_activity_regularizer
,
kernel_constraint
=
self
.
_kernel_constraint
,
bias_constraint
=
self
.
_bias_constraint
,
name
=
"self_attention"
)
self
.
_attention_output_dense
=
dense_einsum
.
DenseEinsum
(
output_shape
=
hidden_size
,
num_summed_dimensions
=
2
,
kernel_initializer
=
self
.
_kernel_initializer
,
bias_initializer
=
self
.
_bias_initializer
,
kernel_regularizer
=
self
.
_kernel_regularizer
,
bias_regularizer
=
self
.
_bias_regularizer
,
activity_regularizer
=
self
.
_activity_regularizer
,
kernel_constraint
=
self
.
_kernel_constraint
,
bias_constraint
=
self
.
_bias_constraint
,
name
=
"self_attention_output"
)
self
.
_attention_dropout
=
tf
.
keras
.
layers
.
Dropout
(
rate
=
self
.
_dropout_rate
)
if
self
.
_use_layer_norm
:
# Use float32 in layernorm for numeric stability.
# It is probably safe in mixed_float16, but we haven't validated this yet.
self
.
_attention_layer_norm
=
(
tf
.
keras
.
layers
.
LayerNormalization
(
name
=
"self_attention_layer_norm"
,
axis
=-
1
,
epsilon
=
1e-12
,
dtype
=
tf
.
float32
))
self
.
_intermediate_dense
=
dense_einsum
.
DenseEinsum
(
output_shape
=
self
.
_intermediate_size
,
activation
=
None
,
kernel_initializer
=
self
.
_kernel_initializer
,
bias_initializer
=
self
.
_bias_initializer
,
kernel_regularizer
=
self
.
_kernel_regularizer
,
bias_regularizer
=
self
.
_bias_regularizer
,
activity_regularizer
=
self
.
_activity_regularizer
,
kernel_constraint
=
self
.
_kernel_constraint
,
bias_constraint
=
self
.
_bias_constraint
,
name
=
"intermediate"
)
self
.
_intermediate_activation_layer
=
tf
.
keras
.
layers
.
Activation
(
self
.
_intermediate_activation
)
self
.
_output_dense
=
dense_einsum
.
DenseEinsum
(
output_shape
=
hidden_size
,
kernel_initializer
=
self
.
_kernel_initializer
,
bias_initializer
=
self
.
_bias_initializer
,
kernel_regularizer
=
self
.
_kernel_regularizer
,
bias_regularizer
=
self
.
_bias_regularizer
,
activity_regularizer
=
self
.
_activity_regularizer
,
kernel_constraint
=
self
.
_kernel_constraint
,
bias_constraint
=
self
.
_bias_constraint
,
name
=
"output"
)
self
.
_output_dropout
=
tf
.
keras
.
layers
.
Dropout
(
rate
=
self
.
_dropout_rate
)
if
self
.
_use_layer_norm
:
# Use float32 in layernorm for numeric stability.
self
.
_output_layer_norm
=
tf
.
keras
.
layers
.
LayerNormalization
(
name
=
"output_layer_norm"
,
axis
=-
1
,
epsilon
=
1e-12
,
dtype
=
tf
.
float32
)
self
.
_rezero_a
=
self
.
add_weight
(
name
=
"rezero_alpha"
,
initializer
=
tf
.
keras
.
initializers
.
Zeros
(),
trainable
=
True
,
dtype
=
tf
.
float32
)
super
(
ReZeroTransformer
,
self
).
build
(
input_shape
)
def
get_config
(
self
):
config
=
{
"num_attention_heads"
:
self
.
_num_heads
,
"intermediate_size"
:
self
.
_intermediate_size
,
"intermediate_activation"
:
self
.
_intermediate_activation
,
"dropout_rate"
:
self
.
_dropout_rate
,
"attention_dropout_rate"
:
self
.
_attention_dropout_rate
,
"kernel_initializer"
:
tf
.
keras
.
initializers
.
serialize
(
self
.
_kernel_initializer
),
"bias_initializer"
:
tf
.
keras
.
initializers
.
serialize
(
self
.
_bias_initializer
),
"kernel_regularizer"
:
tf
.
keras
.
regularizers
.
serialize
(
self
.
_kernel_regularizer
),
"bias_regularizer"
:
tf
.
keras
.
regularizers
.
serialize
(
self
.
_bias_regularizer
),
"activity_regularizer"
:
tf
.
keras
.
regularizers
.
serialize
(
self
.
_activity_regularizer
),
"kernel_constraint"
:
tf
.
keras
.
constraints
.
serialize
(
self
.
_kernel_constraint
),
"bias_constraint"
:
tf
.
keras
.
constraints
.
serialize
(
self
.
_bias_constraint
),
"use_layer_norm"
:
tf
.
keras
.
constraints
.
serialize
(
self
.
_use_layer_norm
)
}
base_config
=
super
(
ReZeroTransformer
,
self
).
get_config
()
return
dict
(
list
(
base_config
.
items
())
+
list
(
config
.
items
()))
def
reset_rezero
(
self
):
self
.
_rezero_a
.
assign
(
0.
)
def
call
(
self
,
inputs
):
if
isinstance
(
inputs
,
(
list
,
tuple
))
and
len
(
inputs
)
==
2
:
input_tensor
,
attention_mask
=
inputs
else
:
input_tensor
,
attention_mask
=
(
inputs
,
None
)
attention_inputs
=
[
input_tensor
,
input_tensor
]
if
attention_mask
is
not
None
:
attention_inputs
.
append
(
attention_mask
)
attention_output
=
self
.
_attention_layer
(
attention_inputs
)
attention_output
=
self
.
_attention_output_dense
(
attention_output
)
attention_output
=
self
.
_attention_dropout
(
attention_output
)
attention_output
=
input_tensor
+
self
.
_rezero_a
*
attention_output
if
self
.
_use_layer_norm
:
attention_output
=
self
.
_attention_layer_norm
(
attention_output
)
else
:
attention_output
=
tf
.
cast
(
attention_output
,
tf
.
float32
)
intermediate_output
=
self
.
_intermediate_dense
(
attention_output
)
intermediate_output
=
self
.
_intermediate_activation_layer
(
intermediate_output
)
layer_output
=
self
.
_output_dense
(
intermediate_output
)
layer_output
=
self
.
_output_dropout
(
layer_output
)
# During mixed precision training, attention_output is from layer norm and
# is always fp32 for now. Cast layer_output to fp32 for the subsequent add.
layer_output
=
attention_output
+
tf
.
cast
(
self
.
_rezero_a
*
layer_output
,
tf
.
float32
)
if
self
.
_use_layer_norm
:
layer_output
=
self
.
_output_layer_norm
(
layer_output
)
return
layer_output
official/nlp/modeling/layers/rezero_transformer_test.py
0 → 100644
View file @
dbd74385
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for Keras-based rezero-transformer block layer."""
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
numpy
as
np
import
tensorflow
as
tf
from
tensorflow.python.keras
import
keras_parameterized
# pylint: disable=g-direct-tensorflow-import
from
official.nlp.modeling.layers
import
rezero_transformer
# This decorator runs the test in V1, V2-Eager, and V2-Functional mode. It
# guarantees forward compatibility of this code for the V2 switchover.
@
keras_parameterized
.
run_all_keras_modes
class
TransformerWithReZeroLayerTest
(
keras_parameterized
.
TestCase
):
def
tearDown
(
self
):
super
(
TransformerWithReZeroLayerTest
,
self
).
tearDown
()
tf
.
keras
.
mixed_precision
.
experimental
.
set_policy
(
'float32'
)
def
test_layer_invocation_with_float16_dtype
(
self
):
tf
.
keras
.
mixed_precision
.
experimental
.
set_policy
(
'mixed_float16'
)
test_layer
=
rezero_transformer
.
ReZeroTransformer
(
num_attention_heads
=
10
,
intermediate_size
=
2048
,
intermediate_activation
=
'relu'
)
sequence_length
=
21
width
=
80
# Create a 3-dimensional input (the first dimension is implicit).
data_tensor
=
tf
.
keras
.
Input
(
shape
=
(
sequence_length
,
width
))
# Create a 2-dimensional input (the first dimension is implicit).
mask_tensor
=
tf
.
keras
.
Input
(
shape
=
(
sequence_length
,
sequence_length
))
output_tensor
=
test_layer
([
data_tensor
,
mask_tensor
])
# Create a model from the test layer.
model
=
tf
.
keras
.
Model
([
data_tensor
,
mask_tensor
],
output_tensor
)
# Invoke the model on test data. We can't validate the output data itself
# (the NN is too complex) but this will rule out structural runtime errors.
batch_size
=
6
input_data
=
(
10
*
np
.
random
.
random_sample
(
(
batch_size
,
sequence_length
,
width
)))
# The attention mask should be of shape (batch, from_seq_len, to_seq_len),
# which here is (batch, sequence_length, sequence_length)
mask_data
=
np
.
random
.
randint
(
2
,
size
=
(
batch_size
,
sequence_length
,
sequence_length
))
_
=
model
.
predict
([
input_data
,
mask_data
])
def
test_rezero_without_layer_norm
(
self
):
test_layer
=
rezero_transformer
.
ReZeroTransformer
(
num_attention_heads
=
10
,
intermediate_size
=
2048
,
intermediate_activation
=
'relu'
,
use_layer_norm
=
False
)
input_length
,
width
=
16
,
30
input_tensor
=
tf
.
keras
.
Input
(
shape
=
(
input_length
,
width
))
output_tensor
=
test_layer
(
input_tensor
)
model
=
tf
.
keras
.
Model
(
input_tensor
,
output_tensor
)
input_data
=
np
.
random
.
rand
(
2
,
input_length
,
width
)
test_layer
.
_rezero_a
.
assign
(
1.0
)
test_layer
.
reset_rezero
()
output_data
=
model
.
predict
(
input_data
)
self
.
assertAllClose
(
input_data
,
output_data
)
def
test_rezero_with_layer_norm
(
self
):
test_layer
=
rezero_transformer
.
ReZeroTransformer
(
num_attention_heads
=
10
,
intermediate_size
=
2048
,
intermediate_activation
=
'relu'
,
use_layer_norm
=
True
)
input_length
,
width
=
16
,
30
input_tensor
=
tf
.
keras
.
Input
(
shape
=
(
input_length
,
width
))
output_tensor
=
test_layer
(
input_tensor
)
model
=
tf
.
keras
.
Model
(
input_tensor
,
output_tensor
)
input_data
=
np
.
random
.
rand
(
2
,
input_length
,
width
)
+
2.0
output_data
=
model
.
predict
(
input_data
)
input_data_normed
=
(
input_data
-
np
.
mean
(
input_data
,
axis
=-
1
,
keepdims
=
True
))
/
(
np
.
std
(
input_data
,
axis
=-
1
,
keepdims
=
True
))
self
.
assertAllClose
(
input_data_normed
,
output_data
)
if
__name__
==
'__main__'
:
tf
.
test
.
main
()
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment