Commit d75ec8ba authored by Zihan Wang's avatar Zihan Wang
Browse files

make init checkpoint a separate function.

parent f2adc5ef
...@@ -9,21 +9,19 @@ This setting allows running on TPUs where tensor sizes have to be determined. ...@@ -9,21 +9,19 @@ This setting allows running on TPUs where tensor sizes have to be determined.
`_get_global_attn_indices` in `longformer_attention.py` contains how the new global attention indices are specified. `_get_global_attn_indices` in `longformer_attention.py` contains how the new global attention indices are specified.
Changed all `tf.cond` to if confiditions, since global attention is specified in the start now. Changed all `tf.cond` to if confiditions, since global attention is specified in the start now.
`sentence_prediction_with_checkpoint_convert.py` now contains a `initial_parameters_from_pk` parameter that To load weights from a pre-trained huggingface longformer, run `utils/convert_pretrained_pytorch_checkpoint_to_tf.py`
specified a pk file containing all pre-trained weights from a pytorch longformer, which can be loaded into the to create a checkpoint.
tf model. There is also a `utils/longformer_tokenizer_to_tfrecord.py` that transformers pytorch longformer tokenized data to tf_records.
The pk file can be generated from `utils/get_parameters_from_pretrained_pytorch_checkpoint.py`.
There is also a `longformer_tokenizer_to_tfrecord.py` that transformers pytorch longformer tokenized data to tf_records.
## Steps to Fine-tune on MNLI ## Steps to Fine-tune on MNLI
#### Prepare the pre-trained checkpoint #### Prepare the pre-trained checkpoint
Option 1. Use our saved checkpoint of `allenai/longformer-base-4096` stored in cloud storage Option 1. Use our saved checkpoint of `allenai/longformer-base-4096` stored in cloud storage
```bash ```bash
gsutil cp gs://model-garden-ucsd-zihan/allenai.pk allenai_longformer-base-4096.pk gsutil cp -r gs://model-garden-ucsd-zihan/longformer-4096 .
``` ```
Option 2. Create it directly Option 2. Create it directly
```bash ```bash
python3 utils/get_parameters_from_pretrained_pytorch_checkpoint.py python3 utils/convert_pretrained_pytorch_checkpoint_to_tf.py
``` ```
#### [Optional] Prepare the input file #### [Optional] Prepare the input file
```bash ```bash
...@@ -33,13 +31,14 @@ python3 longformer_tokenizer_to_tfrecord.py ...@@ -33,13 +31,14 @@ python3 longformer_tokenizer_to_tfrecord.py
Here, we use the training data of MNLI that were uploaded to the cloud storage, you can replace it with the input files you generated. Here, we use the training data of MNLI that were uploaded to the cloud storage, you can replace it with the input files you generated.
```bash ```bash
TRAIN_DATA=task.train_data.input_path=gs://model-garden-ucsd-zihan/longformer_allenai_mnli_train.tf_record,task.validation_data.input_path=gs://model-garden-ucsd-zihan/longformer_allenai_mnli_eval.tf_record TRAIN_DATA=task.train_data.input_path=gs://model-garden-ucsd-zihan/longformer_allenai_mnli_train.tf_record,task.validation_data.input_path=gs://model-garden-ucsd-zihan/longformer_allenai_mnli_eval.tf_record
INIT_CHECKPOINT=longformer-4096/longformer
PYTHONPATH=/path/to/model/garden \ PYTHONPATH=/path/to/model/garden \
python3 train.py \ python3 train.py \
--experiment=longformer/glue \ --experiment=longformer/glue \
--config_file=experiments/glue_mnli_allenai.yaml \ --config_file=experiments/glue_mnli_allenai.yaml \
--params_override="${TRAIN_DATA},runtime.distribution_strategy=tpu,task.initial_parameters_from_pk=allenai_longformer-base-4096.pk" \ --params_override="${TRAIN_DATA},runtime.distribution_strategy=tpu,task.init_checkpoint=${INIT_CHECKPOINT}" \
--tpu=local \ --tpu=local \
--model_dir=/path/to/outputdir \ --model_dir=/path/to/outputdir \
--mode=train_and_eval --mode=train_and_eval
``` ```
This should take an hour or two to run, and give a performance of ~86. This should take ~ 3 hours to run, and give a performance of ~86.
\ No newline at end of file \ No newline at end of file
...@@ -22,10 +22,11 @@ from official.core import exp_factory ...@@ -22,10 +22,11 @@ from official.core import exp_factory
from official.modeling import optimization from official.modeling import optimization
from official.nlp.data import pretrain_dataloader from official.nlp.data import pretrain_dataloader
from official.nlp.tasks import masked_lm from official.nlp.tasks import masked_lm
from official.nlp.tasks import sentence_prediction
from official.nlp.data import sentence_prediction_dataloader from official.nlp.data import sentence_prediction_dataloader
from official.nlp.configs import bert from official.nlp.configs import bert
from official.nlp.configs import encoders from official.nlp.configs import encoders
import official.projects.longformer.sentence_prediction_with_checkpoint_convert as sentence_prediction # import official.projects.longformer.sentence_prediction_with_checkpoint_convert as sentence_prediction
from official.projects.longformer.longformer import LongformerEncoderConfig from official.projects.longformer.longformer import LongformerEncoderConfig
......
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Sentence prediction (classification) task."""
import dataclasses
from typing import List, Union, Optional
from absl import logging
import numpy as np
import orbit
from scipy import stats
from sklearn import metrics as sklearn_metrics
import tensorflow as tf
from official.core import base_task
from official.core import config_definitions as cfg
from official.core import task_factory
from official.modeling import tf_utils
from official.modeling.hyperparams import base_config
from official.nlp.configs import encoders
from official.nlp.data import data_loader_factory
from official.nlp.modeling import models
from official.nlp.tasks import utils
import pickle
METRIC_TYPES = frozenset(
['accuracy', 'matthews_corrcoef', 'pearson_spearman_corr'])
@dataclasses.dataclass
class ModelConfig(base_config.Config):
"""A classifier/regressor configuration."""
num_classes: int = 0
use_encoder_pooler: bool = False
encoder: encoders.EncoderConfig = encoders.EncoderConfig()
@dataclasses.dataclass
class SentencePredictionConfig(cfg.TaskConfig):
"""The model config."""
# At most one of `init_checkpoint` and `hub_module_url` can
# be specified.
init_checkpoint: str = ''
init_cls_pooler: bool = False
initial_parameters_from_pk: str = ''
hub_module_url: str = ''
metric_type: str = 'accuracy'
# Defines the concrete model config at instantiation time.
model: ModelConfig = ModelConfig()
train_data: cfg.DataConfig = cfg.DataConfig()
validation_data: cfg.DataConfig = cfg.DataConfig()
@task_factory.register_task_cls(SentencePredictionConfig)
class SentencePredictionTask(base_task.Task):
"""Task object for sentence_prediction."""
def __init__(self, params: cfg.TaskConfig, logging_dir=None, name=None):
super().__init__(params, logging_dir, name=name)
if params.metric_type not in METRIC_TYPES:
raise ValueError('Invalid metric_type: {}'.format(params.metric_type))
self.metric_type = params.metric_type
if hasattr(params.train_data, 'label_field'):
self.label_field = params.train_data.label_field
else:
self.label_field = 'label_ids'
def build_model(self):
if self.task_config.hub_module_url and self.task_config.init_checkpoint:
raise ValueError('At most one of `hub_module_url` and '
'`init_checkpoint` can be specified.')
if self.task_config.hub_module_url:
encoder_network = utils.get_encoder_from_hub(
self.task_config.hub_module_url)
else:
encoder_network = encoders.build_encoder(self.task_config.model.encoder)
encoder_cfg = self.task_config.model.encoder.get()
if self.task_config.model.encoder.type == 'xlnet':
return models.XLNetClassifier(
network=encoder_network,
num_classes=self.task_config.model.num_classes,
initializer=tf.keras.initializers.RandomNormal(
stddev=encoder_cfg.initializer_range))
else:
return models.BertClassifier(
network=encoder_network,
num_classes=self.task_config.model.num_classes,
initializer=tf.keras.initializers.TruncatedNormal(
stddev=encoder_cfg.initializer_range),
use_encoder_pooler=self.task_config.model.use_encoder_pooler)
def build_losses(self, labels, model_outputs, aux_losses=None) -> tf.Tensor:
label_ids = labels[self.label_field]
if self.task_config.model.num_classes == 1:
loss = tf.keras.losses.mean_squared_error(label_ids, model_outputs)
else:
loss = tf.keras.losses.sparse_categorical_crossentropy(
label_ids, tf.cast(model_outputs, tf.float32), from_logits=True)
if aux_losses:
loss += tf.add_n(aux_losses)
return tf_utils.safe_mean(loss)
def build_inputs(self, params, input_context=None):
"""Returns tf.data.Dataset for sentence_prediction task."""
if params.input_path == 'dummy':
def dummy_data(_):
dummy_ids = tf.zeros((1, params.seq_length), dtype=tf.int32)
x = dict(
input_word_ids=dummy_ids,
input_mask=dummy_ids,
input_type_ids=dummy_ids)
if self.task_config.model.num_classes == 1:
y = tf.zeros((1,), dtype=tf.float32)
else:
y = tf.zeros((1, 1), dtype=tf.int32)
x[self.label_field] = y
return x
dataset = tf.data.Dataset.range(1)
dataset = dataset.repeat()
dataset = dataset.map(
dummy_data, num_parallel_calls=tf.data.experimental.AUTOTUNE)
return dataset
return data_loader_factory.get_data_loader(params).load(input_context)
def build_metrics(self, training=None):
del training
if self.task_config.model.num_classes == 1:
metrics = [tf.keras.metrics.MeanSquaredError()]
elif self.task_config.model.num_classes == 2:
metrics = [
tf.keras.metrics.SparseCategoricalAccuracy(name='cls_accuracy'),
tf.keras.metrics.AUC(name='auc', curve='PR'),
]
else:
metrics = [
tf.keras.metrics.SparseCategoricalAccuracy(name='cls_accuracy'),
]
return metrics
def process_metrics(self, metrics, labels, model_outputs):
for metric in metrics:
if metric.name == 'auc':
# Convert the logit to probability and extract the probability of True..
metric.update_state(
labels[self.label_field],
tf.expand_dims(tf.nn.softmax(model_outputs)[:, 1], axis=1))
if metric.name == 'cls_accuracy':
metric.update_state(labels[self.label_field], model_outputs)
def process_compiled_metrics(self, compiled_metrics, labels, model_outputs):
compiled_metrics.update_state(labels[self.label_field], model_outputs)
def validation_step(self, inputs, model: tf.keras.Model, metrics=None):
if self.metric_type == 'accuracy':
return super(SentencePredictionTask,
self).validation_step(inputs, model, metrics)
features, labels = inputs, inputs
outputs = self.inference_step(features, model)
loss = self.build_losses(
labels=labels, model_outputs=outputs, aux_losses=model.losses)
logs = {self.loss: loss}
if self.metric_type == 'matthews_corrcoef':
logs.update({
'sentence_prediction': # Ensure one prediction along batch dimension.
tf.expand_dims(tf.math.argmax(outputs, axis=1), axis=1),
'labels':
labels[self.label_field],
})
if self.metric_type == 'pearson_spearman_corr':
logs.update({
'sentence_prediction': outputs,
'labels': labels[self.label_field],
})
return logs
def aggregate_logs(self, state=None, step_outputs=None):
if self.metric_type == 'accuracy':
return None
if state is None:
state = {'sentence_prediction': [], 'labels': []}
state['sentence_prediction'].append(
np.concatenate([v.numpy() for v in step_outputs['sentence_prediction']],
axis=0))
state['labels'].append(
np.concatenate([v.numpy() for v in step_outputs['labels']], axis=0))
return state
def reduce_aggregated_logs(self, aggregated_logs, global_step=None):
if self.metric_type == 'accuracy':
return None
elif self.metric_type == 'matthews_corrcoef':
preds = np.concatenate(aggregated_logs['sentence_prediction'], axis=0)
preds = np.reshape(preds, -1)
labels = np.concatenate(aggregated_logs['labels'], axis=0)
labels = np.reshape(labels, -1)
return {
self.metric_type: sklearn_metrics.matthews_corrcoef(preds, labels)
}
elif self.metric_type == 'pearson_spearman_corr':
preds = np.concatenate(aggregated_logs['sentence_prediction'], axis=0)
preds = np.reshape(preds, -1)
labels = np.concatenate(aggregated_logs['labels'], axis=0)
labels = np.reshape(labels, -1)
pearson_corr = stats.pearsonr(preds, labels)[0]
spearman_corr = stats.spearmanr(preds, labels)[0]
corr_metric = (pearson_corr + spearman_corr) / 2
return {self.metric_type: corr_metric}
def initialize(self, model):
"""Load a pretrained checkpoint (if exists) and then train from iter 0."""
ckpt_dir_or_file = self.task_config.init_checkpoint
if self.task_config.initial_parameters_from_pk:
num_layers = self.task_config.model.encoder.any.num_layers
num_attention_heads = self.task_config.model.encoder.any.num_attention_heads
hidden_size = self.task_config.model.encoder.any.hidden_size
head_size = hidden_size // num_attention_heads
assert head_size * num_attention_heads == hidden_size
encoder = model.checkpoint_items['encoder']
allenai_model = pickle.load(open(self.task_config.initial_parameters_from_pk, "rb"))
encoder._embedding_layer.set_weights(
[allenai_model["embeddings.word_embeddings.weight"]]
)
encoder._embedding_norm_layer.set_weights(
[allenai_model["embeddings.LayerNorm.weight"],
allenai_model["embeddings.LayerNorm.bias"]]
)
encoder._type_embedding_layer.set_weights(
[np.repeat(
allenai_model["embeddings.token_type_embeddings.weight"],
2,
axis=0
)]
)
encoder._position_embedding_layer.set_weights(
[allenai_model["embeddings.position_embeddings.weight"]]
)
encoder._pooler_layer.set_weights(
[allenai_model["pooler.dense.weight"],
allenai_model["pooler.dense.bias"]]
)
for layer_num in range(num_layers):
encoder._transformer_layers[layer_num]._attention_layer._global_key_dense.set_weights(
[allenai_model[f"encoder.layer.{layer_num}.attention.self.key_global.weight"].T.reshape((hidden_size, num_attention_heads, head_size)),
allenai_model[f"encoder.layer.{layer_num}.attention.self.key_global.bias"].reshape((num_attention_heads, head_size))]
)
encoder._transformer_layers[layer_num]._attention_layer._global_query_dense.set_weights(
[allenai_model[f"encoder.layer.{layer_num}.attention.self.query_global.weight"].T.reshape((hidden_size, num_attention_heads, head_size)),
allenai_model[f"encoder.layer.{layer_num}.attention.self.query_global.bias"].reshape((num_attention_heads, head_size))]
)
encoder._transformer_layers[layer_num]._attention_layer._global_value_dense.set_weights(
[allenai_model[f"encoder.layer.{layer_num}.attention.self.value_global.weight"].T.reshape((hidden_size, num_attention_heads, head_size)),
allenai_model[f"encoder.layer.{layer_num}.attention.self.value_global.bias"].reshape((num_attention_heads, head_size))]
)
encoder._transformer_layers[layer_num]._attention_layer._key_dense.set_weights(
[allenai_model[f"encoder.layer.{layer_num}.attention.self.key.weight"].T.reshape((hidden_size, num_attention_heads, head_size)),
allenai_model[f"encoder.layer.{layer_num}.attention.self.key_global.bias"].reshape((num_attention_heads, head_size))]
)
encoder._transformer_layers[layer_num]._attention_layer._query_dense.set_weights(
[allenai_model[f"encoder.layer.{layer_num}.attention.self.query.weight"].T.reshape((hidden_size, num_attention_heads, head_size)),
allenai_model[f"encoder.layer.{layer_num}.attention.self.query.bias"].reshape((num_attention_heads, head_size))]
)
encoder._transformer_layers[layer_num]._attention_layer._value_dense.set_weights(
[allenai_model[f"encoder.layer.{layer_num}.attention.self.value.weight"].T.reshape((hidden_size, num_attention_heads, head_size)),
allenai_model[f"encoder.layer.{layer_num}.attention.self.value.bias"].reshape((num_attention_heads, head_size))]
)
encoder._transformer_layers[layer_num]._attention_layer._output_dense.set_weights(
[allenai_model[f"encoder.layer.{layer_num}.attention.output.dense.weight"].T,
allenai_model[f"encoder.layer.{layer_num}.attention.output.dense.bias"]]
)
encoder._transformer_layers[layer_num]._attention_layer_norm.set_weights(
[allenai_model[f"encoder.layer.{layer_num}.attention.output.LayerNorm.weight"],
allenai_model[f"encoder.layer.{layer_num}.attention.output.LayerNorm.bias"]]
)
encoder._transformer_layers[layer_num]._intermediate_dense.set_weights(
[allenai_model[f"encoder.layer.{layer_num}.intermediate.dense.weight"].T,
allenai_model[f"encoder.layer.{layer_num}.intermediate.dense.bias"]]
)
encoder._transformer_layers[layer_num]._output_dense.set_weights(
[allenai_model[f"encoder.layer.{layer_num}.output.dense.weight"].T,
allenai_model[f"encoder.layer.{layer_num}.output.dense.bias"]]
)
encoder._transformer_layers[layer_num]._output_layer_norm.set_weights(
[allenai_model[f"encoder.layer.{layer_num}.output.LayerNorm.weight"],
allenai_model[f"encoder.layer.{layer_num}.output.LayerNorm.bias"]]
)
if not ckpt_dir_or_file:
return
if tf.io.gfile.isdir(ckpt_dir_or_file):
ckpt_dir_or_file = tf.train.latest_checkpoint(ckpt_dir_or_file)
pretrain2finetune_mapping = {
'encoder': model.checkpoint_items['encoder'],
}
if self.task_config.init_cls_pooler:
# This option is valid when use_encoder_pooler is false.
pretrain2finetune_mapping[
'next_sentence.pooler_dense'] = model.checkpoint_items[
'sentence_prediction.pooler_dense']
ckpt = tf.train.Checkpoint(**pretrain2finetune_mapping)
status = ckpt.read(ckpt_dir_or_file)
status.expect_partial().assert_existing_objects_matched()
logging.info('Finished loading pretrained checkpoint from %s',
ckpt_dir_or_file)
def predict(task: SentencePredictionTask,
params: cfg.DataConfig,
model: tf.keras.Model,
params_aug: Optional[cfg.DataConfig] = None,
test_time_aug_wgt: float = 0.3) -> List[Union[int, float]]:
"""Predicts on the input data.
Args:
task: A `SentencePredictionTask` object.
params: A `cfg.DataConfig` object.
model: A keras.Model.
params_aug: A `cfg.DataConfig` object for augmented data.
test_time_aug_wgt: Test time augmentation weight. The prediction score will
use (1. - test_time_aug_wgt) original prediction plus test_time_aug_wgt
augmented prediction.
Returns:
A list of predictions with length of `num_examples`. For regression task,
each element in the list is the predicted score; for classification task,
each element is the predicted class id.
"""
def predict_step(inputs):
"""Replicated prediction calculation."""
x = inputs
example_id = x.pop('example_id')
outputs = task.inference_step(x, model)
return dict(example_id=example_id, predictions=outputs)
def aggregate_fn(state, outputs):
"""Concatenates model's outputs."""
if state is None:
state = []
for per_replica_example_id, per_replica_batch_predictions in zip(
outputs['example_id'], outputs['predictions']):
state.extend(zip(per_replica_example_id, per_replica_batch_predictions))
return state
dataset = orbit.utils.make_distributed_dataset(tf.distribute.get_strategy(),
task.build_inputs, params)
outputs = utils.predict(predict_step, aggregate_fn, dataset)
# When running on TPU POD, the order of output cannot be maintained,
# so we need to sort by example_id.
outputs = sorted(outputs, key=lambda x: x[0])
is_regression = task.task_config.model.num_classes == 1
if params_aug is not None:
dataset_aug = orbit.utils.make_distributed_dataset(
tf.distribute.get_strategy(), task.build_inputs, params_aug)
outputs_aug = utils.predict(predict_step, aggregate_fn, dataset_aug)
outputs_aug = sorted(outputs_aug, key=lambda x: x[0])
if is_regression:
return [(1. - test_time_aug_wgt) * x[1] + test_time_aug_wgt * y[1]
for x, y in zip(outputs, outputs_aug)]
else:
return [
tf.argmax(
(1. - test_time_aug_wgt) * x[1] + test_time_aug_wgt * y[1],
axis=-1) for x, y in zip(outputs, outputs_aug)
]
if is_regression:
return [x[1] for x in outputs]
else:
return [tf.argmax(x[1], axis=-1) for x in outputs]
# Copyright 2022 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Converts pre-trained pytorch checkpoint into a tf encoder checkpoint
"""
import os
from absl import app
import tensorflow as tf
from official.modeling import tf_utils
import transformers
import numpy as np
from official.projects.longformer.longformer_encoder import LongformerEncoder
from official.projects.longformer.longformer import LongformerEncoderConfig
def _get_pytorch_longformer_model():
pretrained_lm = "allenai/longformer-base-4096"
model = transformers.AutoModel.from_pretrained(pretrained_lm)
return {
n: p.data.numpy() for n, p in model.named_parameters()
}
def _create_longformer_model():
encoder_cfg = LongformerEncoderConfig
encoder_cfg.vocab_size = 50265
encoder_cfg.max_position_embeddings = 4098
encoder_cfg.attention_window = [2] * encoder_cfg.num_layers
encoder_cfg.global_attention_size = 1
encoder = LongformerEncoder(
attention_window=encoder_cfg.attention_window,
global_attention_size=encoder_cfg.global_attention_size,
vocab_size=encoder_cfg.vocab_size,
hidden_size=encoder_cfg.hidden_size,
num_layers=encoder_cfg.num_layers,
num_attention_heads=encoder_cfg.num_attention_heads,
inner_dim=encoder_cfg.intermediate_size,
inner_activation=tf_utils.get_activation(encoder_cfg.hidden_activation),
output_dropout=encoder_cfg.dropout_rate,
attention_dropout=encoder_cfg.attention_dropout_rate,
max_sequence_length=encoder_cfg.max_position_embeddings,
type_vocab_size=encoder_cfg.type_vocab_size,
initializer=tf.keras.initializers.TruncatedNormal(
stddev=encoder_cfg.initializer_range),
output_range=encoder_cfg.output_range,
embedding_width=encoder_cfg.embedding_size,
norm_first=encoder_cfg.norm_first
)
return encoder
def convert(encoder, allenai_model):
num_layers = encoder._config["num_layers"]
num_attention_heads = encoder._config["num_attention_heads"]
hidden_size = encoder._config["hidden_size"]
head_size = hidden_size // num_attention_heads
assert head_size * num_attention_heads == hidden_size
encoder._embedding_layer.set_weights(
[allenai_model["embeddings.word_embeddings.weight"]]
)
encoder._embedding_norm_layer.set_weights(
[allenai_model["embeddings.LayerNorm.weight"],
allenai_model["embeddings.LayerNorm.bias"]]
)
encoder._type_embedding_layer.set_weights(
[np.repeat(
allenai_model["embeddings.token_type_embeddings.weight"],
2,
axis=0
)]
)
encoder._position_embedding_layer.set_weights(
[allenai_model["embeddings.position_embeddings.weight"]]
)
encoder._pooler_layer.set_weights(
[allenai_model["pooler.dense.weight"],
allenai_model["pooler.dense.bias"]]
)
for layer_num in range(num_layers):
encoder._transformer_layers[layer_num]._attention_layer._global_key_dense.set_weights(
[allenai_model[f"encoder.layer.{layer_num}.attention.self.key_global.weight"].T.reshape(
(hidden_size, num_attention_heads, head_size)),
allenai_model[f"encoder.layer.{layer_num}.attention.self.key_global.bias"].reshape(
(num_attention_heads, head_size))]
)
encoder._transformer_layers[layer_num]._attention_layer._global_query_dense.set_weights(
[allenai_model[f"encoder.layer.{layer_num}.attention.self.query_global.weight"].T.reshape(
(hidden_size, num_attention_heads, head_size)),
allenai_model[f"encoder.layer.{layer_num}.attention.self.query_global.bias"].reshape(
(num_attention_heads, head_size))]
)
encoder._transformer_layers[layer_num]._attention_layer._global_value_dense.set_weights(
[allenai_model[f"encoder.layer.{layer_num}.attention.self.value_global.weight"].T.reshape(
(hidden_size, num_attention_heads, head_size)),
allenai_model[f"encoder.layer.{layer_num}.attention.self.value_global.bias"].reshape(
(num_attention_heads, head_size))]
)
encoder._transformer_layers[layer_num]._attention_layer._key_dense.set_weights(
[allenai_model[f"encoder.layer.{layer_num}.attention.self.key.weight"].T.reshape(
(hidden_size, num_attention_heads, head_size)),
allenai_model[f"encoder.layer.{layer_num}.attention.self.key_global.bias"].reshape(
(num_attention_heads, head_size))]
)
encoder._transformer_layers[layer_num]._attention_layer._query_dense.set_weights(
[allenai_model[f"encoder.layer.{layer_num}.attention.self.query.weight"].T.reshape(
(hidden_size, num_attention_heads, head_size)),
allenai_model[f"encoder.layer.{layer_num}.attention.self.query.bias"].reshape((num_attention_heads, head_size))]
)
encoder._transformer_layers[layer_num]._attention_layer._value_dense.set_weights(
[allenai_model[f"encoder.layer.{layer_num}.attention.self.value.weight"].T.reshape(
(hidden_size, num_attention_heads, head_size)),
allenai_model[f"encoder.layer.{layer_num}.attention.self.value.bias"].reshape((num_attention_heads, head_size))]
)
encoder._transformer_layers[layer_num]._attention_layer._output_dense.set_weights(
[allenai_model[f"encoder.layer.{layer_num}.attention.output.dense.weight"].T,
allenai_model[f"encoder.layer.{layer_num}.attention.output.dense.bias"]]
)
encoder._transformer_layers[layer_num]._attention_layer_norm.set_weights(
[allenai_model[f"encoder.layer.{layer_num}.attention.output.LayerNorm.weight"],
allenai_model[f"encoder.layer.{layer_num}.attention.output.LayerNorm.bias"]]
)
encoder._transformer_layers[layer_num]._intermediate_dense.set_weights(
[allenai_model[f"encoder.layer.{layer_num}.intermediate.dense.weight"].T,
allenai_model[f"encoder.layer.{layer_num}.intermediate.dense.bias"]]
)
encoder._transformer_layers[layer_num]._output_dense.set_weights(
[allenai_model[f"encoder.layer.{layer_num}.output.dense.weight"].T,
allenai_model[f"encoder.layer.{layer_num}.output.dense.bias"]]
)
encoder._transformer_layers[layer_num]._output_layer_norm.set_weights(
[allenai_model[f"encoder.layer.{layer_num}.output.LayerNorm.weight"],
allenai_model[f"encoder.layer.{layer_num}.output.LayerNorm.bias"]]
)
def convert_checkpoint(output_path):
output_dir, _ = os.path.split(output_path)
tf.io.gfile.makedirs(output_dir)
encoder = _create_longformer_model()
allenai_model = _get_pytorch_longformer_model()
sequence_length = 128
batch_size = 2
word_id_data = np.random.randint(10, size=(batch_size, sequence_length), dtype=np.int32)
mask_data = np.random.randint(2, size=(batch_size, sequence_length), dtype=np.int32)
type_id_data = np.random.randint(2, size=(batch_size, sequence_length), dtype=np.int32)
inputs = {
'input_word_ids': word_id_data,
'input_mask': mask_data,
'input_type_ids': type_id_data,
}
encoder(inputs)
convert(encoder, allenai_model)
tf.train.Checkpoint(encoder=encoder).write(output_path)
def main(argv):
convert_checkpoint("longformer-4096/longformer")
if __name__ == "__main__":
app.run(main)
import transformers
pretrained_lm = "allenai/longformer-base-4096"
model = transformers.AutoModel.from_pretrained(pretrained_lm)
import pickle
pickle.dump({
n: p.data.numpy()
for n, p in model.named_parameters()}, open(f"{pretrained_lm.replace('/', '_')}.pk", "wb"))
\ No newline at end of file
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment