Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
ResNet50_tensorflow
Commits
d75ec8ba
Commit
d75ec8ba
authored
Mar 01, 2022
by
Zihan Wang
Browse files
make init checkpoint a separate function.
parent
f2adc5ef
Changes
5
Hide whitespace changes
Inline
Side-by-side
Showing
5 changed files
with
186 additions
and
407 deletions
+186
-407
official/projects/longformer/README.md
official/projects/longformer/README.md
+8
-9
official/projects/longformer/longformer_experiments.py
official/projects/longformer/longformer_experiments.py
+2
-1
official/projects/longformer/sentence_prediction_with_checkpoint_convert.py
...longformer/sentence_prediction_with_checkpoint_convert.py
+0
-388
official/projects/longformer/utils/convert_pretrained_pytorch_checkpoint_to_tf.py
...rmer/utils/convert_pretrained_pytorch_checkpoint_to_tf.py
+176
-0
official/projects/longformer/utils/get_parameters_from_pretrained_pytorch_checkpoint.py
...tils/get_parameters_from_pretrained_pytorch_checkpoint.py
+0
-9
No files found.
official/projects/longformer/README.md
View file @
d75ec8ba
...
@@ -9,21 +9,19 @@ This setting allows running on TPUs where tensor sizes have to be determined.
...
@@ -9,21 +9,19 @@ This setting allows running on TPUs where tensor sizes have to be determined.
`_get_global_attn_indices`
in
`longformer_attention.py`
contains how the new global attention indices are specified.
`_get_global_attn_indices`
in
`longformer_attention.py`
contains how the new global attention indices are specified.
Changed all
`tf.cond`
to if confiditions, since global attention is specified in the start now.
Changed all
`tf.cond`
to if confiditions, since global attention is specified in the start now.
`sentence_prediction_with_checkpoint_convert.py`
now contains a
`initial_parameters_from_pk`
parameter that
To load weights from a pre-trained huggingface longformer, run
`utils/convert_pretrained_pytorch_checkpoint_to_tf.py`
specified a pk file containing all pre-trained weights from a pytorch longformer, which can be loaded into the
to create a checkpoint.
tf model.
There is also a
`utils/longformer_tokenizer_to_tfrecord.py`
that transformers pytorch longformer tokenized data to tf_records.
The pk file can be generated from
`utils/get_parameters_from_pretrained_pytorch_checkpoint.py`
.
There is also a
`longformer_tokenizer_to_tfrecord.py`
that transformers pytorch longformer tokenized data to tf_records.
## Steps to Fine-tune on MNLI
## Steps to Fine-tune on MNLI
#### Prepare the pre-trained checkpoint
#### Prepare the pre-trained checkpoint
Option 1. Use our saved checkpoint of
`allenai/longformer-base-4096`
stored in cloud storage
Option 1. Use our saved checkpoint of
`allenai/longformer-base-4096`
stored in cloud storage
```
bash
```
bash
gsutil
cp
gs://model-garden-ucsd-zihan/
allenai.pk allenai_
longformer-
base-
4096.
pk
gsutil
cp
-r
gs://model-garden-ucsd-zihan/longformer-4096
.
```
```
Option 2. Create it directly
Option 2. Create it directly
```
bash
```
bash
python3 utils/
get_parameters_from
_pretrained_pytorch_checkpoint.py
python3 utils/
convert
_pretrained_pytorch_checkpoint
_to_tf
.py
```
```
#### [Optional] Prepare the input file
#### [Optional] Prepare the input file
```
bash
```
bash
...
@@ -33,13 +31,14 @@ python3 longformer_tokenizer_to_tfrecord.py
...
@@ -33,13 +31,14 @@ python3 longformer_tokenizer_to_tfrecord.py
Here, we use the training data of MNLI that were uploaded to the cloud storage, you can replace it with the input files you generated.
Here, we use the training data of MNLI that were uploaded to the cloud storage, you can replace it with the input files you generated.
```
bash
```
bash
TRAIN_DATA
=
task.train_data.input_path
=
gs://model-garden-ucsd-zihan/longformer_allenai_mnli_train.tf_record,task.validation_data.input_path
=
gs://model-garden-ucsd-zihan/longformer_allenai_mnli_eval.tf_record
TRAIN_DATA
=
task.train_data.input_path
=
gs://model-garden-ucsd-zihan/longformer_allenai_mnli_train.tf_record,task.validation_data.input_path
=
gs://model-garden-ucsd-zihan/longformer_allenai_mnli_eval.tf_record
INIT_CHECKPOINT
=
longformer-4096/longformer
PYTHONPATH
=
/path/to/model/garden
\
PYTHONPATH
=
/path/to/model/garden
\
python3 train.py
\
python3 train.py
\
--experiment
=
longformer/glue
\
--experiment
=
longformer/glue
\
--config_file
=
experiments/glue_mnli_allenai.yaml
\
--config_file
=
experiments/glue_mnli_allenai.yaml
\
--params_override
=
"
${
TRAIN_DATA
}
,runtime.distribution_strategy=tpu,task.init
ial_parameters_from_pk=allenai_longformer-base-4096.pk
"
\
--params_override
=
"
${
TRAIN_DATA
}
,runtime.distribution_strategy=tpu,task.init
_checkpoint=
${
INIT_CHECKPOINT
}
"
\
--tpu
=
local
\
--tpu
=
local
\
--model_dir
=
/path/to/outputdir
\
--model_dir
=
/path/to/outputdir
\
--mode
=
train_and_eval
--mode
=
train_and_eval
```
```
This should take an hour or two to run, and give a performance of ~86.
This should take ~ 3 hours to run, and give a performance of ~86.
\ No newline at end of file
\ No newline at end of file
official/projects/longformer/longformer_experiments.py
View file @
d75ec8ba
...
@@ -22,10 +22,11 @@ from official.core import exp_factory
...
@@ -22,10 +22,11 @@ from official.core import exp_factory
from
official.modeling
import
optimization
from
official.modeling
import
optimization
from
official.nlp.data
import
pretrain_dataloader
from
official.nlp.data
import
pretrain_dataloader
from
official.nlp.tasks
import
masked_lm
from
official.nlp.tasks
import
masked_lm
from
official.nlp.tasks
import
sentence_prediction
from
official.nlp.data
import
sentence_prediction_dataloader
from
official.nlp.data
import
sentence_prediction_dataloader
from
official.nlp.configs
import
bert
from
official.nlp.configs
import
bert
from
official.nlp.configs
import
encoders
from
official.nlp.configs
import
encoders
import
official.projects.longformer.sentence_prediction_with_checkpoint_convert
as
sentence_prediction
#
import official.projects.longformer.sentence_prediction_with_checkpoint_convert as sentence_prediction
from
official.projects.longformer.longformer
import
LongformerEncoderConfig
from
official.projects.longformer.longformer
import
LongformerEncoderConfig
...
...
official/projects/longformer/sentence_prediction_with_checkpoint_convert.py
deleted
100644 → 0
View file @
f2adc5ef
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Sentence prediction (classification) task."""
import
dataclasses
from
typing
import
List
,
Union
,
Optional
from
absl
import
logging
import
numpy
as
np
import
orbit
from
scipy
import
stats
from
sklearn
import
metrics
as
sklearn_metrics
import
tensorflow
as
tf
from
official.core
import
base_task
from
official.core
import
config_definitions
as
cfg
from
official.core
import
task_factory
from
official.modeling
import
tf_utils
from
official.modeling.hyperparams
import
base_config
from
official.nlp.configs
import
encoders
from
official.nlp.data
import
data_loader_factory
from
official.nlp.modeling
import
models
from
official.nlp.tasks
import
utils
import
pickle
METRIC_TYPES
=
frozenset
(
[
'accuracy'
,
'matthews_corrcoef'
,
'pearson_spearman_corr'
])
@
dataclasses
.
dataclass
class
ModelConfig
(
base_config
.
Config
):
"""A classifier/regressor configuration."""
num_classes
:
int
=
0
use_encoder_pooler
:
bool
=
False
encoder
:
encoders
.
EncoderConfig
=
encoders
.
EncoderConfig
()
@
dataclasses
.
dataclass
class
SentencePredictionConfig
(
cfg
.
TaskConfig
):
"""The model config."""
# At most one of `init_checkpoint` and `hub_module_url` can
# be specified.
init_checkpoint
:
str
=
''
init_cls_pooler
:
bool
=
False
initial_parameters_from_pk
:
str
=
''
hub_module_url
:
str
=
''
metric_type
:
str
=
'accuracy'
# Defines the concrete model config at instantiation time.
model
:
ModelConfig
=
ModelConfig
()
train_data
:
cfg
.
DataConfig
=
cfg
.
DataConfig
()
validation_data
:
cfg
.
DataConfig
=
cfg
.
DataConfig
()
@
task_factory
.
register_task_cls
(
SentencePredictionConfig
)
class
SentencePredictionTask
(
base_task
.
Task
):
"""Task object for sentence_prediction."""
def
__init__
(
self
,
params
:
cfg
.
TaskConfig
,
logging_dir
=
None
,
name
=
None
):
super
().
__init__
(
params
,
logging_dir
,
name
=
name
)
if
params
.
metric_type
not
in
METRIC_TYPES
:
raise
ValueError
(
'Invalid metric_type: {}'
.
format
(
params
.
metric_type
))
self
.
metric_type
=
params
.
metric_type
if
hasattr
(
params
.
train_data
,
'label_field'
):
self
.
label_field
=
params
.
train_data
.
label_field
else
:
self
.
label_field
=
'label_ids'
def
build_model
(
self
):
if
self
.
task_config
.
hub_module_url
and
self
.
task_config
.
init_checkpoint
:
raise
ValueError
(
'At most one of `hub_module_url` and '
'`init_checkpoint` can be specified.'
)
if
self
.
task_config
.
hub_module_url
:
encoder_network
=
utils
.
get_encoder_from_hub
(
self
.
task_config
.
hub_module_url
)
else
:
encoder_network
=
encoders
.
build_encoder
(
self
.
task_config
.
model
.
encoder
)
encoder_cfg
=
self
.
task_config
.
model
.
encoder
.
get
()
if
self
.
task_config
.
model
.
encoder
.
type
==
'xlnet'
:
return
models
.
XLNetClassifier
(
network
=
encoder_network
,
num_classes
=
self
.
task_config
.
model
.
num_classes
,
initializer
=
tf
.
keras
.
initializers
.
RandomNormal
(
stddev
=
encoder_cfg
.
initializer_range
))
else
:
return
models
.
BertClassifier
(
network
=
encoder_network
,
num_classes
=
self
.
task_config
.
model
.
num_classes
,
initializer
=
tf
.
keras
.
initializers
.
TruncatedNormal
(
stddev
=
encoder_cfg
.
initializer_range
),
use_encoder_pooler
=
self
.
task_config
.
model
.
use_encoder_pooler
)
def
build_losses
(
self
,
labels
,
model_outputs
,
aux_losses
=
None
)
->
tf
.
Tensor
:
label_ids
=
labels
[
self
.
label_field
]
if
self
.
task_config
.
model
.
num_classes
==
1
:
loss
=
tf
.
keras
.
losses
.
mean_squared_error
(
label_ids
,
model_outputs
)
else
:
loss
=
tf
.
keras
.
losses
.
sparse_categorical_crossentropy
(
label_ids
,
tf
.
cast
(
model_outputs
,
tf
.
float32
),
from_logits
=
True
)
if
aux_losses
:
loss
+=
tf
.
add_n
(
aux_losses
)
return
tf_utils
.
safe_mean
(
loss
)
def
build_inputs
(
self
,
params
,
input_context
=
None
):
"""Returns tf.data.Dataset for sentence_prediction task."""
if
params
.
input_path
==
'dummy'
:
def
dummy_data
(
_
):
dummy_ids
=
tf
.
zeros
((
1
,
params
.
seq_length
),
dtype
=
tf
.
int32
)
x
=
dict
(
input_word_ids
=
dummy_ids
,
input_mask
=
dummy_ids
,
input_type_ids
=
dummy_ids
)
if
self
.
task_config
.
model
.
num_classes
==
1
:
y
=
tf
.
zeros
((
1
,),
dtype
=
tf
.
float32
)
else
:
y
=
tf
.
zeros
((
1
,
1
),
dtype
=
tf
.
int32
)
x
[
self
.
label_field
]
=
y
return
x
dataset
=
tf
.
data
.
Dataset
.
range
(
1
)
dataset
=
dataset
.
repeat
()
dataset
=
dataset
.
map
(
dummy_data
,
num_parallel_calls
=
tf
.
data
.
experimental
.
AUTOTUNE
)
return
dataset
return
data_loader_factory
.
get_data_loader
(
params
).
load
(
input_context
)
def
build_metrics
(
self
,
training
=
None
):
del
training
if
self
.
task_config
.
model
.
num_classes
==
1
:
metrics
=
[
tf
.
keras
.
metrics
.
MeanSquaredError
()]
elif
self
.
task_config
.
model
.
num_classes
==
2
:
metrics
=
[
tf
.
keras
.
metrics
.
SparseCategoricalAccuracy
(
name
=
'cls_accuracy'
),
tf
.
keras
.
metrics
.
AUC
(
name
=
'auc'
,
curve
=
'PR'
),
]
else
:
metrics
=
[
tf
.
keras
.
metrics
.
SparseCategoricalAccuracy
(
name
=
'cls_accuracy'
),
]
return
metrics
def
process_metrics
(
self
,
metrics
,
labels
,
model_outputs
):
for
metric
in
metrics
:
if
metric
.
name
==
'auc'
:
# Convert the logit to probability and extract the probability of True..
metric
.
update_state
(
labels
[
self
.
label_field
],
tf
.
expand_dims
(
tf
.
nn
.
softmax
(
model_outputs
)[:,
1
],
axis
=
1
))
if
metric
.
name
==
'cls_accuracy'
:
metric
.
update_state
(
labels
[
self
.
label_field
],
model_outputs
)
def
process_compiled_metrics
(
self
,
compiled_metrics
,
labels
,
model_outputs
):
compiled_metrics
.
update_state
(
labels
[
self
.
label_field
],
model_outputs
)
def
validation_step
(
self
,
inputs
,
model
:
tf
.
keras
.
Model
,
metrics
=
None
):
if
self
.
metric_type
==
'accuracy'
:
return
super
(
SentencePredictionTask
,
self
).
validation_step
(
inputs
,
model
,
metrics
)
features
,
labels
=
inputs
,
inputs
outputs
=
self
.
inference_step
(
features
,
model
)
loss
=
self
.
build_losses
(
labels
=
labels
,
model_outputs
=
outputs
,
aux_losses
=
model
.
losses
)
logs
=
{
self
.
loss
:
loss
}
if
self
.
metric_type
==
'matthews_corrcoef'
:
logs
.
update
({
'sentence_prediction'
:
# Ensure one prediction along batch dimension.
tf
.
expand_dims
(
tf
.
math
.
argmax
(
outputs
,
axis
=
1
),
axis
=
1
),
'labels'
:
labels
[
self
.
label_field
],
})
if
self
.
metric_type
==
'pearson_spearman_corr'
:
logs
.
update
({
'sentence_prediction'
:
outputs
,
'labels'
:
labels
[
self
.
label_field
],
})
return
logs
def
aggregate_logs
(
self
,
state
=
None
,
step_outputs
=
None
):
if
self
.
metric_type
==
'accuracy'
:
return
None
if
state
is
None
:
state
=
{
'sentence_prediction'
:
[],
'labels'
:
[]}
state
[
'sentence_prediction'
].
append
(
np
.
concatenate
([
v
.
numpy
()
for
v
in
step_outputs
[
'sentence_prediction'
]],
axis
=
0
))
state
[
'labels'
].
append
(
np
.
concatenate
([
v
.
numpy
()
for
v
in
step_outputs
[
'labels'
]],
axis
=
0
))
return
state
def
reduce_aggregated_logs
(
self
,
aggregated_logs
,
global_step
=
None
):
if
self
.
metric_type
==
'accuracy'
:
return
None
elif
self
.
metric_type
==
'matthews_corrcoef'
:
preds
=
np
.
concatenate
(
aggregated_logs
[
'sentence_prediction'
],
axis
=
0
)
preds
=
np
.
reshape
(
preds
,
-
1
)
labels
=
np
.
concatenate
(
aggregated_logs
[
'labels'
],
axis
=
0
)
labels
=
np
.
reshape
(
labels
,
-
1
)
return
{
self
.
metric_type
:
sklearn_metrics
.
matthews_corrcoef
(
preds
,
labels
)
}
elif
self
.
metric_type
==
'pearson_spearman_corr'
:
preds
=
np
.
concatenate
(
aggregated_logs
[
'sentence_prediction'
],
axis
=
0
)
preds
=
np
.
reshape
(
preds
,
-
1
)
labels
=
np
.
concatenate
(
aggregated_logs
[
'labels'
],
axis
=
0
)
labels
=
np
.
reshape
(
labels
,
-
1
)
pearson_corr
=
stats
.
pearsonr
(
preds
,
labels
)[
0
]
spearman_corr
=
stats
.
spearmanr
(
preds
,
labels
)[
0
]
corr_metric
=
(
pearson_corr
+
spearman_corr
)
/
2
return
{
self
.
metric_type
:
corr_metric
}
def
initialize
(
self
,
model
):
"""Load a pretrained checkpoint (if exists) and then train from iter 0."""
ckpt_dir_or_file
=
self
.
task_config
.
init_checkpoint
if
self
.
task_config
.
initial_parameters_from_pk
:
num_layers
=
self
.
task_config
.
model
.
encoder
.
any
.
num_layers
num_attention_heads
=
self
.
task_config
.
model
.
encoder
.
any
.
num_attention_heads
hidden_size
=
self
.
task_config
.
model
.
encoder
.
any
.
hidden_size
head_size
=
hidden_size
//
num_attention_heads
assert
head_size
*
num_attention_heads
==
hidden_size
encoder
=
model
.
checkpoint_items
[
'encoder'
]
allenai_model
=
pickle
.
load
(
open
(
self
.
task_config
.
initial_parameters_from_pk
,
"rb"
))
encoder
.
_embedding_layer
.
set_weights
(
[
allenai_model
[
"embeddings.word_embeddings.weight"
]]
)
encoder
.
_embedding_norm_layer
.
set_weights
(
[
allenai_model
[
"embeddings.LayerNorm.weight"
],
allenai_model
[
"embeddings.LayerNorm.bias"
]]
)
encoder
.
_type_embedding_layer
.
set_weights
(
[
np
.
repeat
(
allenai_model
[
"embeddings.token_type_embeddings.weight"
],
2
,
axis
=
0
)]
)
encoder
.
_position_embedding_layer
.
set_weights
(
[
allenai_model
[
"embeddings.position_embeddings.weight"
]]
)
encoder
.
_pooler_layer
.
set_weights
(
[
allenai_model
[
"pooler.dense.weight"
],
allenai_model
[
"pooler.dense.bias"
]]
)
for
layer_num
in
range
(
num_layers
):
encoder
.
_transformer_layers
[
layer_num
].
_attention_layer
.
_global_key_dense
.
set_weights
(
[
allenai_model
[
f
"encoder.layer.
{
layer_num
}
.attention.self.key_global.weight"
].
T
.
reshape
((
hidden_size
,
num_attention_heads
,
head_size
)),
allenai_model
[
f
"encoder.layer.
{
layer_num
}
.attention.self.key_global.bias"
].
reshape
((
num_attention_heads
,
head_size
))]
)
encoder
.
_transformer_layers
[
layer_num
].
_attention_layer
.
_global_query_dense
.
set_weights
(
[
allenai_model
[
f
"encoder.layer.
{
layer_num
}
.attention.self.query_global.weight"
].
T
.
reshape
((
hidden_size
,
num_attention_heads
,
head_size
)),
allenai_model
[
f
"encoder.layer.
{
layer_num
}
.attention.self.query_global.bias"
].
reshape
((
num_attention_heads
,
head_size
))]
)
encoder
.
_transformer_layers
[
layer_num
].
_attention_layer
.
_global_value_dense
.
set_weights
(
[
allenai_model
[
f
"encoder.layer.
{
layer_num
}
.attention.self.value_global.weight"
].
T
.
reshape
((
hidden_size
,
num_attention_heads
,
head_size
)),
allenai_model
[
f
"encoder.layer.
{
layer_num
}
.attention.self.value_global.bias"
].
reshape
((
num_attention_heads
,
head_size
))]
)
encoder
.
_transformer_layers
[
layer_num
].
_attention_layer
.
_key_dense
.
set_weights
(
[
allenai_model
[
f
"encoder.layer.
{
layer_num
}
.attention.self.key.weight"
].
T
.
reshape
((
hidden_size
,
num_attention_heads
,
head_size
)),
allenai_model
[
f
"encoder.layer.
{
layer_num
}
.attention.self.key_global.bias"
].
reshape
((
num_attention_heads
,
head_size
))]
)
encoder
.
_transformer_layers
[
layer_num
].
_attention_layer
.
_query_dense
.
set_weights
(
[
allenai_model
[
f
"encoder.layer.
{
layer_num
}
.attention.self.query.weight"
].
T
.
reshape
((
hidden_size
,
num_attention_heads
,
head_size
)),
allenai_model
[
f
"encoder.layer.
{
layer_num
}
.attention.self.query.bias"
].
reshape
((
num_attention_heads
,
head_size
))]
)
encoder
.
_transformer_layers
[
layer_num
].
_attention_layer
.
_value_dense
.
set_weights
(
[
allenai_model
[
f
"encoder.layer.
{
layer_num
}
.attention.self.value.weight"
].
T
.
reshape
((
hidden_size
,
num_attention_heads
,
head_size
)),
allenai_model
[
f
"encoder.layer.
{
layer_num
}
.attention.self.value.bias"
].
reshape
((
num_attention_heads
,
head_size
))]
)
encoder
.
_transformer_layers
[
layer_num
].
_attention_layer
.
_output_dense
.
set_weights
(
[
allenai_model
[
f
"encoder.layer.
{
layer_num
}
.attention.output.dense.weight"
].
T
,
allenai_model
[
f
"encoder.layer.
{
layer_num
}
.attention.output.dense.bias"
]]
)
encoder
.
_transformer_layers
[
layer_num
].
_attention_layer_norm
.
set_weights
(
[
allenai_model
[
f
"encoder.layer.
{
layer_num
}
.attention.output.LayerNorm.weight"
],
allenai_model
[
f
"encoder.layer.
{
layer_num
}
.attention.output.LayerNorm.bias"
]]
)
encoder
.
_transformer_layers
[
layer_num
].
_intermediate_dense
.
set_weights
(
[
allenai_model
[
f
"encoder.layer.
{
layer_num
}
.intermediate.dense.weight"
].
T
,
allenai_model
[
f
"encoder.layer.
{
layer_num
}
.intermediate.dense.bias"
]]
)
encoder
.
_transformer_layers
[
layer_num
].
_output_dense
.
set_weights
(
[
allenai_model
[
f
"encoder.layer.
{
layer_num
}
.output.dense.weight"
].
T
,
allenai_model
[
f
"encoder.layer.
{
layer_num
}
.output.dense.bias"
]]
)
encoder
.
_transformer_layers
[
layer_num
].
_output_layer_norm
.
set_weights
(
[
allenai_model
[
f
"encoder.layer.
{
layer_num
}
.output.LayerNorm.weight"
],
allenai_model
[
f
"encoder.layer.
{
layer_num
}
.output.LayerNorm.bias"
]]
)
if
not
ckpt_dir_or_file
:
return
if
tf
.
io
.
gfile
.
isdir
(
ckpt_dir_or_file
):
ckpt_dir_or_file
=
tf
.
train
.
latest_checkpoint
(
ckpt_dir_or_file
)
pretrain2finetune_mapping
=
{
'encoder'
:
model
.
checkpoint_items
[
'encoder'
],
}
if
self
.
task_config
.
init_cls_pooler
:
# This option is valid when use_encoder_pooler is false.
pretrain2finetune_mapping
[
'next_sentence.pooler_dense'
]
=
model
.
checkpoint_items
[
'sentence_prediction.pooler_dense'
]
ckpt
=
tf
.
train
.
Checkpoint
(
**
pretrain2finetune_mapping
)
status
=
ckpt
.
read
(
ckpt_dir_or_file
)
status
.
expect_partial
().
assert_existing_objects_matched
()
logging
.
info
(
'Finished loading pretrained checkpoint from %s'
,
ckpt_dir_or_file
)
def
predict
(
task
:
SentencePredictionTask
,
params
:
cfg
.
DataConfig
,
model
:
tf
.
keras
.
Model
,
params_aug
:
Optional
[
cfg
.
DataConfig
]
=
None
,
test_time_aug_wgt
:
float
=
0.3
)
->
List
[
Union
[
int
,
float
]]:
"""Predicts on the input data.
Args:
task: A `SentencePredictionTask` object.
params: A `cfg.DataConfig` object.
model: A keras.Model.
params_aug: A `cfg.DataConfig` object for augmented data.
test_time_aug_wgt: Test time augmentation weight. The prediction score will
use (1. - test_time_aug_wgt) original prediction plus test_time_aug_wgt
augmented prediction.
Returns:
A list of predictions with length of `num_examples`. For regression task,
each element in the list is the predicted score; for classification task,
each element is the predicted class id.
"""
def
predict_step
(
inputs
):
"""Replicated prediction calculation."""
x
=
inputs
example_id
=
x
.
pop
(
'example_id'
)
outputs
=
task
.
inference_step
(
x
,
model
)
return
dict
(
example_id
=
example_id
,
predictions
=
outputs
)
def
aggregate_fn
(
state
,
outputs
):
"""Concatenates model's outputs."""
if
state
is
None
:
state
=
[]
for
per_replica_example_id
,
per_replica_batch_predictions
in
zip
(
outputs
[
'example_id'
],
outputs
[
'predictions'
]):
state
.
extend
(
zip
(
per_replica_example_id
,
per_replica_batch_predictions
))
return
state
dataset
=
orbit
.
utils
.
make_distributed_dataset
(
tf
.
distribute
.
get_strategy
(),
task
.
build_inputs
,
params
)
outputs
=
utils
.
predict
(
predict_step
,
aggregate_fn
,
dataset
)
# When running on TPU POD, the order of output cannot be maintained,
# so we need to sort by example_id.
outputs
=
sorted
(
outputs
,
key
=
lambda
x
:
x
[
0
])
is_regression
=
task
.
task_config
.
model
.
num_classes
==
1
if
params_aug
is
not
None
:
dataset_aug
=
orbit
.
utils
.
make_distributed_dataset
(
tf
.
distribute
.
get_strategy
(),
task
.
build_inputs
,
params_aug
)
outputs_aug
=
utils
.
predict
(
predict_step
,
aggregate_fn
,
dataset_aug
)
outputs_aug
=
sorted
(
outputs_aug
,
key
=
lambda
x
:
x
[
0
])
if
is_regression
:
return
[(
1.
-
test_time_aug_wgt
)
*
x
[
1
]
+
test_time_aug_wgt
*
y
[
1
]
for
x
,
y
in
zip
(
outputs
,
outputs_aug
)]
else
:
return
[
tf
.
argmax
(
(
1.
-
test_time_aug_wgt
)
*
x
[
1
]
+
test_time_aug_wgt
*
y
[
1
],
axis
=-
1
)
for
x
,
y
in
zip
(
outputs
,
outputs_aug
)
]
if
is_regression
:
return
[
x
[
1
]
for
x
in
outputs
]
else
:
return
[
tf
.
argmax
(
x
[
1
],
axis
=-
1
)
for
x
in
outputs
]
official/projects/longformer/utils/convert_pretrained_pytorch_checkpoint_to_tf.py
0 → 100644
View file @
d75ec8ba
# Copyright 2022 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Converts pre-trained pytorch checkpoint into a tf encoder checkpoint
"""
import
os
from
absl
import
app
import
tensorflow
as
tf
from
official.modeling
import
tf_utils
import
transformers
import
numpy
as
np
from
official.projects.longformer.longformer_encoder
import
LongformerEncoder
from
official.projects.longformer.longformer
import
LongformerEncoderConfig
def
_get_pytorch_longformer_model
():
pretrained_lm
=
"allenai/longformer-base-4096"
model
=
transformers
.
AutoModel
.
from_pretrained
(
pretrained_lm
)
return
{
n
:
p
.
data
.
numpy
()
for
n
,
p
in
model
.
named_parameters
()
}
def
_create_longformer_model
():
encoder_cfg
=
LongformerEncoderConfig
encoder_cfg
.
vocab_size
=
50265
encoder_cfg
.
max_position_embeddings
=
4098
encoder_cfg
.
attention_window
=
[
2
]
*
encoder_cfg
.
num_layers
encoder_cfg
.
global_attention_size
=
1
encoder
=
LongformerEncoder
(
attention_window
=
encoder_cfg
.
attention_window
,
global_attention_size
=
encoder_cfg
.
global_attention_size
,
vocab_size
=
encoder_cfg
.
vocab_size
,
hidden_size
=
encoder_cfg
.
hidden_size
,
num_layers
=
encoder_cfg
.
num_layers
,
num_attention_heads
=
encoder_cfg
.
num_attention_heads
,
inner_dim
=
encoder_cfg
.
intermediate_size
,
inner_activation
=
tf_utils
.
get_activation
(
encoder_cfg
.
hidden_activation
),
output_dropout
=
encoder_cfg
.
dropout_rate
,
attention_dropout
=
encoder_cfg
.
attention_dropout_rate
,
max_sequence_length
=
encoder_cfg
.
max_position_embeddings
,
type_vocab_size
=
encoder_cfg
.
type_vocab_size
,
initializer
=
tf
.
keras
.
initializers
.
TruncatedNormal
(
stddev
=
encoder_cfg
.
initializer_range
),
output_range
=
encoder_cfg
.
output_range
,
embedding_width
=
encoder_cfg
.
embedding_size
,
norm_first
=
encoder_cfg
.
norm_first
)
return
encoder
def
convert
(
encoder
,
allenai_model
):
num_layers
=
encoder
.
_config
[
"num_layers"
]
num_attention_heads
=
encoder
.
_config
[
"num_attention_heads"
]
hidden_size
=
encoder
.
_config
[
"hidden_size"
]
head_size
=
hidden_size
//
num_attention_heads
assert
head_size
*
num_attention_heads
==
hidden_size
encoder
.
_embedding_layer
.
set_weights
(
[
allenai_model
[
"embeddings.word_embeddings.weight"
]]
)
encoder
.
_embedding_norm_layer
.
set_weights
(
[
allenai_model
[
"embeddings.LayerNorm.weight"
],
allenai_model
[
"embeddings.LayerNorm.bias"
]]
)
encoder
.
_type_embedding_layer
.
set_weights
(
[
np
.
repeat
(
allenai_model
[
"embeddings.token_type_embeddings.weight"
],
2
,
axis
=
0
)]
)
encoder
.
_position_embedding_layer
.
set_weights
(
[
allenai_model
[
"embeddings.position_embeddings.weight"
]]
)
encoder
.
_pooler_layer
.
set_weights
(
[
allenai_model
[
"pooler.dense.weight"
],
allenai_model
[
"pooler.dense.bias"
]]
)
for
layer_num
in
range
(
num_layers
):
encoder
.
_transformer_layers
[
layer_num
].
_attention_layer
.
_global_key_dense
.
set_weights
(
[
allenai_model
[
f
"encoder.layer.
{
layer_num
}
.attention.self.key_global.weight"
].
T
.
reshape
(
(
hidden_size
,
num_attention_heads
,
head_size
)),
allenai_model
[
f
"encoder.layer.
{
layer_num
}
.attention.self.key_global.bias"
].
reshape
(
(
num_attention_heads
,
head_size
))]
)
encoder
.
_transformer_layers
[
layer_num
].
_attention_layer
.
_global_query_dense
.
set_weights
(
[
allenai_model
[
f
"encoder.layer.
{
layer_num
}
.attention.self.query_global.weight"
].
T
.
reshape
(
(
hidden_size
,
num_attention_heads
,
head_size
)),
allenai_model
[
f
"encoder.layer.
{
layer_num
}
.attention.self.query_global.bias"
].
reshape
(
(
num_attention_heads
,
head_size
))]
)
encoder
.
_transformer_layers
[
layer_num
].
_attention_layer
.
_global_value_dense
.
set_weights
(
[
allenai_model
[
f
"encoder.layer.
{
layer_num
}
.attention.self.value_global.weight"
].
T
.
reshape
(
(
hidden_size
,
num_attention_heads
,
head_size
)),
allenai_model
[
f
"encoder.layer.
{
layer_num
}
.attention.self.value_global.bias"
].
reshape
(
(
num_attention_heads
,
head_size
))]
)
encoder
.
_transformer_layers
[
layer_num
].
_attention_layer
.
_key_dense
.
set_weights
(
[
allenai_model
[
f
"encoder.layer.
{
layer_num
}
.attention.self.key.weight"
].
T
.
reshape
(
(
hidden_size
,
num_attention_heads
,
head_size
)),
allenai_model
[
f
"encoder.layer.
{
layer_num
}
.attention.self.key_global.bias"
].
reshape
(
(
num_attention_heads
,
head_size
))]
)
encoder
.
_transformer_layers
[
layer_num
].
_attention_layer
.
_query_dense
.
set_weights
(
[
allenai_model
[
f
"encoder.layer.
{
layer_num
}
.attention.self.query.weight"
].
T
.
reshape
(
(
hidden_size
,
num_attention_heads
,
head_size
)),
allenai_model
[
f
"encoder.layer.
{
layer_num
}
.attention.self.query.bias"
].
reshape
((
num_attention_heads
,
head_size
))]
)
encoder
.
_transformer_layers
[
layer_num
].
_attention_layer
.
_value_dense
.
set_weights
(
[
allenai_model
[
f
"encoder.layer.
{
layer_num
}
.attention.self.value.weight"
].
T
.
reshape
(
(
hidden_size
,
num_attention_heads
,
head_size
)),
allenai_model
[
f
"encoder.layer.
{
layer_num
}
.attention.self.value.bias"
].
reshape
((
num_attention_heads
,
head_size
))]
)
encoder
.
_transformer_layers
[
layer_num
].
_attention_layer
.
_output_dense
.
set_weights
(
[
allenai_model
[
f
"encoder.layer.
{
layer_num
}
.attention.output.dense.weight"
].
T
,
allenai_model
[
f
"encoder.layer.
{
layer_num
}
.attention.output.dense.bias"
]]
)
encoder
.
_transformer_layers
[
layer_num
].
_attention_layer_norm
.
set_weights
(
[
allenai_model
[
f
"encoder.layer.
{
layer_num
}
.attention.output.LayerNorm.weight"
],
allenai_model
[
f
"encoder.layer.
{
layer_num
}
.attention.output.LayerNorm.bias"
]]
)
encoder
.
_transformer_layers
[
layer_num
].
_intermediate_dense
.
set_weights
(
[
allenai_model
[
f
"encoder.layer.
{
layer_num
}
.intermediate.dense.weight"
].
T
,
allenai_model
[
f
"encoder.layer.
{
layer_num
}
.intermediate.dense.bias"
]]
)
encoder
.
_transformer_layers
[
layer_num
].
_output_dense
.
set_weights
(
[
allenai_model
[
f
"encoder.layer.
{
layer_num
}
.output.dense.weight"
].
T
,
allenai_model
[
f
"encoder.layer.
{
layer_num
}
.output.dense.bias"
]]
)
encoder
.
_transformer_layers
[
layer_num
].
_output_layer_norm
.
set_weights
(
[
allenai_model
[
f
"encoder.layer.
{
layer_num
}
.output.LayerNorm.weight"
],
allenai_model
[
f
"encoder.layer.
{
layer_num
}
.output.LayerNorm.bias"
]]
)
def
convert_checkpoint
(
output_path
):
output_dir
,
_
=
os
.
path
.
split
(
output_path
)
tf
.
io
.
gfile
.
makedirs
(
output_dir
)
encoder
=
_create_longformer_model
()
allenai_model
=
_get_pytorch_longformer_model
()
sequence_length
=
128
batch_size
=
2
word_id_data
=
np
.
random
.
randint
(
10
,
size
=
(
batch_size
,
sequence_length
),
dtype
=
np
.
int32
)
mask_data
=
np
.
random
.
randint
(
2
,
size
=
(
batch_size
,
sequence_length
),
dtype
=
np
.
int32
)
type_id_data
=
np
.
random
.
randint
(
2
,
size
=
(
batch_size
,
sequence_length
),
dtype
=
np
.
int32
)
inputs
=
{
'input_word_ids'
:
word_id_data
,
'input_mask'
:
mask_data
,
'input_type_ids'
:
type_id_data
,
}
encoder
(
inputs
)
convert
(
encoder
,
allenai_model
)
tf
.
train
.
Checkpoint
(
encoder
=
encoder
).
write
(
output_path
)
def
main
(
argv
):
convert_checkpoint
(
"longformer-4096/longformer"
)
if
__name__
==
"__main__"
:
app
.
run
(
main
)
official/projects/longformer/utils/get_parameters_from_pretrained_pytorch_checkpoint.py
deleted
100644 → 0
View file @
f2adc5ef
import
transformers
pretrained_lm
=
"allenai/longformer-base-4096"
model
=
transformers
.
AutoModel
.
from_pretrained
(
pretrained_lm
)
import
pickle
pickle
.
dump
({
n
:
p
.
data
.
numpy
()
for
n
,
p
in
model
.
named_parameters
()},
open
(
f
"
{
pretrained_lm
.
replace
(
'/'
,
'_'
)
}
.pk"
,
"wb"
))
\ No newline at end of file
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment