Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
ResNet50_tensorflow
Commits
cdf815f8
Commit
cdf815f8
authored
Mar 31, 2021
by
A. Unique TensorFlower
Browse files
Internal change
PiperOrigin-RevId: 366052172
parent
eb6687ac
Changes
8
Hide whitespace changes
Inline
Side-by-side
Showing
8 changed files
with
302 additions
and
43 deletions
+302
-43
official/vision/beta/configs/retinanet.py
official/vision/beta/configs/retinanet.py
+2
-1
official/vision/beta/modeling/factory.py
official/vision/beta/modeling/factory.py
+1
-0
official/vision/beta/modeling/heads/dense_prediction_heads.py
...cial/vision/beta/modeling/heads/dense_prediction_heads.py
+92
-1
official/vision/beta/modeling/heads/dense_prediction_heads_test.py
...vision/beta/modeling/heads/dense_prediction_heads_test.py
+17
-6
official/vision/beta/modeling/layers/detection_generator.py
official/vision/beta/modeling/layers/detection_generator.py
+120
-21
official/vision/beta/modeling/layers/detection_generator_test.py
...l/vision/beta/modeling/layers/detection_generator_test.py
+31
-4
official/vision/beta/modeling/retinanet_model.py
official/vision/beta/modeling/retinanet_model.py
+15
-5
official/vision/beta/modeling/retinanet_model_test.py
official/vision/beta/modeling/retinanet_model_test.py
+24
-5
No files found.
official/vision/beta/configs/retinanet.py
View file @
cdf815f8
...
@@ -16,7 +16,7 @@
...
@@ -16,7 +16,7 @@
"""RetinaNet configuration definition."""
"""RetinaNet configuration definition."""
import
os
import
os
from
typing
import
List
,
Optional
from
typing
import
Dict
,
List
,
Optional
,
Tuple
import
dataclasses
import
dataclasses
from
official.core
import
config_definitions
as
cfg
from
official.core
import
config_definitions
as
cfg
from
official.core
import
exp_factory
from
official.core
import
exp_factory
...
@@ -93,6 +93,7 @@ class RetinaNetHead(hyperparams.Config):
...
@@ -93,6 +93,7 @@ class RetinaNetHead(hyperparams.Config):
num_convs
:
int
=
4
num_convs
:
int
=
4
num_filters
:
int
=
256
num_filters
:
int
=
256
use_separable_conv
:
bool
=
False
use_separable_conv
:
bool
=
False
attribute_heads
:
Optional
[
Dict
[
str
,
Tuple
[
str
,
int
]]]
=
None
@
dataclasses
.
dataclass
@
dataclasses
.
dataclass
...
...
official/vision/beta/modeling/factory.py
View file @
cdf815f8
...
@@ -221,6 +221,7 @@ def build_retinanet(input_specs: tf.keras.layers.InputSpec,
...
@@ -221,6 +221,7 @@ def build_retinanet(input_specs: tf.keras.layers.InputSpec,
num_anchors_per_location
=
num_anchors_per_location
,
num_anchors_per_location
=
num_anchors_per_location
,
num_convs
=
head_config
.
num_convs
,
num_convs
=
head_config
.
num_convs
,
num_filters
=
head_config
.
num_filters
,
num_filters
=
head_config
.
num_filters
,
attribute_heads
=
head_config
.
attribute_heads
,
use_separable_conv
=
head_config
.
use_separable_conv
,
use_separable_conv
=
head_config
.
use_separable_conv
,
activation
=
norm_activation_config
.
activation
,
activation
=
norm_activation_config
.
activation
,
use_sync_bn
=
norm_activation_config
.
use_sync_bn
,
use_sync_bn
=
norm_activation_config
.
use_sync_bn
,
...
...
official/vision/beta/modeling/heads/dense_prediction_heads.py
View file @
cdf815f8
...
@@ -32,6 +32,7 @@ class RetinaNetHead(tf.keras.layers.Layer):
...
@@ -32,6 +32,7 @@ class RetinaNetHead(tf.keras.layers.Layer):
num_anchors_per_location
,
num_anchors_per_location
,
num_convs
=
4
,
num_convs
=
4
,
num_filters
=
256
,
num_filters
=
256
,
attribute_heads
=
None
,
use_separable_conv
=
False
,
use_separable_conv
=
False
,
activation
=
'relu'
,
activation
=
'relu'
,
use_sync_bn
=
False
,
use_sync_bn
=
False
,
...
@@ -52,6 +53,9 @@ class RetinaNetHead(tf.keras.layers.Layer):
...
@@ -52,6 +53,9 @@ class RetinaNetHead(tf.keras.layers.Layer):
conv layers before the prediction.
conv layers before the prediction.
num_filters: An `int` number that represents the number of filters of the
num_filters: An `int` number that represents the number of filters of the
intermediate conv layers.
intermediate conv layers.
attribute_heads: If not None, a dict that contains
(attribute_name, attribute_config) for additional attribute heads.
`attribute_config` is a tuple of (attribute_type, attribute_size).
use_separable_conv: A `bool` that indicates whether the separable
use_separable_conv: A `bool` that indicates whether the separable
convolution layers is used.
convolution layers is used.
activation: A `str` that indicates which activation is used, e.g. 'relu',
activation: A `str` that indicates which activation is used, e.g. 'relu',
...
@@ -73,6 +77,7 @@ class RetinaNetHead(tf.keras.layers.Layer):
...
@@ -73,6 +77,7 @@ class RetinaNetHead(tf.keras.layers.Layer):
'num_anchors_per_location'
:
num_anchors_per_location
,
'num_anchors_per_location'
:
num_anchors_per_location
,
'num_convs'
:
num_convs
,
'num_convs'
:
num_convs
,
'num_filters'
:
num_filters
,
'num_filters'
:
num_filters
,
'attribute_heads'
:
attribute_heads
,
'use_separable_conv'
:
use_separable_conv
,
'use_separable_conv'
:
use_separable_conv
,
'activation'
:
activation
,
'activation'
:
activation
,
'use_sync_bn'
:
use_sync_bn
,
'use_sync_bn'
:
use_sync_bn
,
...
@@ -174,6 +179,64 @@ class RetinaNetHead(tf.keras.layers.Layer):
...
@@ -174,6 +179,64 @@ class RetinaNetHead(tf.keras.layers.Layer):
})
})
self
.
_box_regressor
=
conv_op
(
name
=
'boxes'
,
**
box_regressor_kwargs
)
self
.
_box_regressor
=
conv_op
(
name
=
'boxes'
,
**
box_regressor_kwargs
)
# Attribute learning nets.
if
self
.
_config_dict
[
'attribute_heads'
]:
self
.
_att_predictors
=
{}
self
.
_att_convs
=
{}
self
.
_att_norms
=
{}
for
att_name
,
att_head
in
self
.
_config_dict
[
'attribute_heads'
].
items
():
att_convs_i
=
[]
att_norms_i
=
[]
att_type
=
att_head
[
0
]
att_size
=
att_head
[
1
]
# Build conv and norm layers.
for
level
in
range
(
self
.
_config_dict
[
'min_level'
],
self
.
_config_dict
[
'max_level'
]
+
1
):
this_level_att_norms
=
[]
for
i
in
range
(
self
.
_config_dict
[
'num_convs'
]):
if
level
==
self
.
_config_dict
[
'min_level'
]:
att_conv_name
=
'{}-conv_{}'
.
format
(
att_name
,
i
)
att_convs_i
.
append
(
conv_op
(
name
=
att_conv_name
,
**
conv_kwargs
))
att_norm_name
=
'{}-conv-norm_{}_{}'
.
format
(
att_name
,
level
,
i
)
this_level_att_norms
.
append
(
bn_op
(
name
=
att_norm_name
,
**
bn_kwargs
))
att_norms_i
.
append
(
this_level_att_norms
)
self
.
_att_convs
[
att_name
]
=
att_convs_i
self
.
_att_norms
[
att_name
]
=
att_norms_i
# Build the final prediction layer.
att_predictor_kwargs
=
{
'filters'
:
(
att_size
*
self
.
_config_dict
[
'num_anchors_per_location'
]),
'kernel_size'
:
3
,
'padding'
:
'same'
,
'bias_initializer'
:
tf
.
zeros_initializer
(),
'bias_regularizer'
:
self
.
_config_dict
[
'bias_regularizer'
],
}
if
att_type
==
'regression'
:
att_predictor_kwargs
.
update
(
{
'bias_initializer'
:
tf
.
zeros_initializer
()})
elif
att_type
==
'classification'
:
att_predictor_kwargs
.
update
({
'bias_initializer'
:
tf
.
constant_initializer
(
-
np
.
log
((
1
-
0.01
)
/
0.01
))
})
else
:
raise
ValueError
(
'Attribute head type {} not supported.'
.
format
(
att_type
))
if
not
self
.
_config_dict
[
'use_separable_conv'
]:
att_predictor_kwargs
.
update
({
'kernel_initializer'
:
tf
.
keras
.
initializers
.
RandomNormal
(
stddev
=
1e-5
),
'kernel_regularizer'
:
self
.
_config_dict
[
'kernel_regularizer'
],
})
self
.
_att_predictors
[
att_name
]
=
conv_op
(
name
=
'{}_attributes'
.
format
(
att_name
),
**
att_predictor_kwargs
)
super
(
RetinaNetHead
,
self
).
build
(
input_shape
)
super
(
RetinaNetHead
,
self
).
build
(
input_shape
)
def
call
(
self
,
features
):
def
call
(
self
,
features
):
...
@@ -197,9 +260,25 @@ class RetinaNetHead(tf.keras.layers.Layer):
...
@@ -197,9 +260,25 @@ class RetinaNetHead(tf.keras.layers.Layer):
- values: A `tf.Tensor` of the box scores predicted from a particular
- values: A `tf.Tensor` of the box scores predicted from a particular
feature level, whose shape is
feature level, whose shape is
[batch, height_l, width_l, 4 * num_anchors_per_location].
[batch, height_l, width_l, 4 * num_anchors_per_location].
attributes: a dict of (attribute_name, attribute_prediction). Each
`attribute_prediction` is a dict of:
- key: `str`, the level of the multilevel predictions.
- values: `Tensor`, the box scores predicted from a particular feature
level, whose shape is
[batch, height_l, width_l,
attribute_size * num_anchors_per_location].
Can be an empty dictionary if no attribute learning is required.
"""
"""
scores
=
{}
scores
=
{}
boxes
=
{}
boxes
=
{}
if
self
.
_config_dict
[
'attribute_heads'
]:
attributes
=
{
att_name
:
{}
for
att_name
in
self
.
_config_dict
[
'attribute_heads'
].
keys
()
}
else
:
attributes
=
{}
for
i
,
level
in
enumerate
(
for
i
,
level
in
enumerate
(
range
(
self
.
_config_dict
[
'min_level'
],
range
(
self
.
_config_dict
[
'min_level'
],
self
.
_config_dict
[
'max_level'
]
+
1
)):
self
.
_config_dict
[
'max_level'
]
+
1
)):
...
@@ -220,7 +299,19 @@ class RetinaNetHead(tf.keras.layers.Layer):
...
@@ -220,7 +299,19 @@ class RetinaNetHead(tf.keras.layers.Layer):
x
=
norm
(
x
)
x
=
norm
(
x
)
x
=
self
.
_activation
(
x
)
x
=
self
.
_activation
(
x
)
boxes
[
str
(
level
)]
=
self
.
_box_regressor
(
x
)
boxes
[
str
(
level
)]
=
self
.
_box_regressor
(
x
)
return
scores
,
boxes
# attribute nets.
if
self
.
_config_dict
[
'attribute_heads'
]:
for
att_name
in
self
.
_config_dict
[
'attribute_heads'
].
keys
():
x
=
this_level_features
for
conv
,
norm
in
zip
(
self
.
_att_convs
[
att_name
],
self
.
_att_norms
[
att_name
][
i
]):
x
=
conv
(
x
)
x
=
norm
(
x
)
x
=
self
.
_activation
(
x
)
attributes
[
att_name
][
str
(
level
)]
=
self
.
_att_predictors
[
att_name
](
x
)
return
scores
,
boxes
,
attributes
def
get_config
(
self
):
def
get_config
(
self
):
return
self
.
_config_dict
return
self
.
_config_dict
...
...
official/vision/beta/modeling/heads/dense_prediction_heads_test.py
View file @
cdf815f8
...
@@ -26,12 +26,17 @@ from official.vision.beta.modeling.heads import dense_prediction_heads
...
@@ -26,12 +26,17 @@ from official.vision.beta.modeling.heads import dense_prediction_heads
class
RetinaNetHeadTest
(
parameterized
.
TestCase
,
tf
.
test
.
TestCase
):
class
RetinaNetHeadTest
(
parameterized
.
TestCase
,
tf
.
test
.
TestCase
):
@
parameterized
.
parameters
(
@
parameterized
.
parameters
(
(
False
,
False
),
(
False
,
False
,
False
),
(
False
,
True
),
(
False
,
True
,
False
),
(
True
,
False
),
(
True
,
False
,
True
),
(
True
,
True
),
(
True
,
True
,
True
),
)
)
def
test_forward
(
self
,
use_separable_conv
,
use_sync_bn
):
def
test_forward
(
self
,
use_separable_conv
,
use_sync_bn
,
has_att_heads
):
if
has_att_heads
:
attribute_heads
=
{
'depth'
:
(
'regression'
,
1
)}
else
:
attribute_heads
=
None
retinanet_head
=
dense_prediction_heads
.
RetinaNetHead
(
retinanet_head
=
dense_prediction_heads
.
RetinaNetHead
(
min_level
=
3
,
min_level
=
3
,
max_level
=
4
,
max_level
=
4
,
...
@@ -39,6 +44,7 @@ class RetinaNetHeadTest(parameterized.TestCase, tf.test.TestCase):
...
@@ -39,6 +44,7 @@ class RetinaNetHeadTest(parameterized.TestCase, tf.test.TestCase):
num_anchors_per_location
=
3
,
num_anchors_per_location
=
3
,
num_convs
=
2
,
num_convs
=
2
,
num_filters
=
256
,
num_filters
=
256
,
attribute_heads
=
attribute_heads
,
use_separable_conv
=
use_separable_conv
,
use_separable_conv
=
use_separable_conv
,
activation
=
'relu'
,
activation
=
'relu'
,
use_sync_bn
=
use_sync_bn
,
use_sync_bn
=
use_sync_bn
,
...
@@ -51,11 +57,15 @@ class RetinaNetHeadTest(parameterized.TestCase, tf.test.TestCase):
...
@@ -51,11 +57,15 @@ class RetinaNetHeadTest(parameterized.TestCase, tf.test.TestCase):
'3'
:
np
.
random
.
rand
(
2
,
128
,
128
,
16
),
'3'
:
np
.
random
.
rand
(
2
,
128
,
128
,
16
),
'4'
:
np
.
random
.
rand
(
2
,
64
,
64
,
16
),
'4'
:
np
.
random
.
rand
(
2
,
64
,
64
,
16
),
}
}
scores
,
boxes
=
retinanet_head
(
features
)
scores
,
boxes
,
attributes
=
retinanet_head
(
features
)
self
.
assertAllEqual
(
scores
[
'3'
].
numpy
().
shape
,
[
2
,
128
,
128
,
9
])
self
.
assertAllEqual
(
scores
[
'3'
].
numpy
().
shape
,
[
2
,
128
,
128
,
9
])
self
.
assertAllEqual
(
scores
[
'4'
].
numpy
().
shape
,
[
2
,
64
,
64
,
9
])
self
.
assertAllEqual
(
scores
[
'4'
].
numpy
().
shape
,
[
2
,
64
,
64
,
9
])
self
.
assertAllEqual
(
boxes
[
'3'
].
numpy
().
shape
,
[
2
,
128
,
128
,
12
])
self
.
assertAllEqual
(
boxes
[
'3'
].
numpy
().
shape
,
[
2
,
128
,
128
,
12
])
self
.
assertAllEqual
(
boxes
[
'4'
].
numpy
().
shape
,
[
2
,
64
,
64
,
12
])
self
.
assertAllEqual
(
boxes
[
'4'
].
numpy
().
shape
,
[
2
,
64
,
64
,
12
])
if
has_att_heads
:
for
att
in
attributes
.
values
():
self
.
assertAllEqual
(
att
[
'3'
].
numpy
().
shape
,
[
2
,
128
,
128
,
3
])
self
.
assertAllEqual
(
att
[
'4'
].
numpy
().
shape
,
[
2
,
64
,
64
,
3
])
def
test_serialize_deserialize
(
self
):
def
test_serialize_deserialize
(
self
):
retinanet_head
=
dense_prediction_heads
.
RetinaNetHead
(
retinanet_head
=
dense_prediction_heads
.
RetinaNetHead
(
...
@@ -65,6 +75,7 @@ class RetinaNetHeadTest(parameterized.TestCase, tf.test.TestCase):
...
@@ -65,6 +75,7 @@ class RetinaNetHeadTest(parameterized.TestCase, tf.test.TestCase):
num_anchors_per_location
=
9
,
num_anchors_per_location
=
9
,
num_convs
=
2
,
num_convs
=
2
,
num_filters
=
16
,
num_filters
=
16
,
attribute_heads
=
None
,
use_separable_conv
=
False
,
use_separable_conv
=
False
,
activation
=
'relu'
,
activation
=
'relu'
,
use_sync_bn
=
False
,
use_sync_bn
=
False
,
...
...
official/vision/beta/modeling/layers/detection_generator.py
View file @
cdf815f8
...
@@ -15,7 +15,6 @@
...
@@ -15,7 +15,6 @@
"""Contains definitions of generators to generate the final detections."""
"""Contains definitions of generators to generate the final detections."""
# Import libraries
# Import libraries
import
tensorflow
as
tf
import
tensorflow
as
tf
from
official.vision.beta.ops
import
box_ops
from
official.vision.beta.ops
import
box_ops
...
@@ -24,6 +23,7 @@ from official.vision.beta.ops import nms
...
@@ -24,6 +23,7 @@ from official.vision.beta.ops import nms
def
_generate_detections_v1
(
boxes
,
def
_generate_detections_v1
(
boxes
,
scores
,
scores
,
attributes
=
None
,
pre_nms_top_k
=
5000
,
pre_nms_top_k
=
5000
,
pre_nms_score_threshold
=
0.05
,
pre_nms_score_threshold
=
0.05
,
nms_iou_threshold
=
0.5
,
nms_iou_threshold
=
0.5
,
...
@@ -36,12 +36,18 @@ def _generate_detections_v1(boxes,
...
@@ -36,12 +36,18 @@ def _generate_detections_v1(boxes,
Args:
Args:
boxes: A `tf.Tensor` with shape `[batch_size, N, num_classes, 4]` or
boxes: A `tf.Tensor` with shape `[batch_size, N, num_classes, 4]` or
`[batch_size, N, 1, 4]`
, which
box predictions on all feature levels. The
`[batch_size, N, 1, 4]`
for
box predictions on all feature levels. The
N is the number of total anchors on all levels.
N is the number of total anchors on all levels.
scores: A `tf.Tensor` with shape `[batch_size, N, num_classes]`, which
scores: A `tf.Tensor` with shape `[batch_size, N, num_classes]`, which
stacks class probability on all feature levels. The N is the number of
stacks class probability on all feature levels. The N is the number of
total anchors on all levels. The num_classes is the number of classes
total anchors on all levels. The num_classes is the number of classes
predicted by the model. Note that the class_outputs here is the raw score.
predicted by the model. Note that the class_outputs here is the raw score.
attributes: None or a dict of (attribute_name, attributes) pairs. Each
attributes is a `tf.Tensor` with shape
`[batch_size, N, num_classes, attribute_size]` or
`[batch_size, N, 1, attribute_size]` for attribute predictions on all
feature levels. The N is the number of total anchors on all levels. Can
be None if no attribute learning is required.
pre_nms_top_k: An `int` number of top candidate detections per class before
pre_nms_top_k: An `int` number of top candidate detections per class before
NMS.
NMS.
pre_nms_score_threshold: A `float` representing the threshold for deciding
pre_nms_score_threshold: A `float` representing the threshold for deciding
...
@@ -63,6 +69,11 @@ def _generate_detections_v1(boxes,
...
@@ -63,6 +69,11 @@ def _generate_detections_v1(boxes,
boxes.
boxes.
valid_detections: An `int` type `tf.Tensor` of shape `[batch_size]` only the
valid_detections: An `int` type `tf.Tensor` of shape `[batch_size]` only the
top `valid_detections` boxes are valid detections.
top `valid_detections` boxes are valid detections.
nms_attributes: None or a dict of (attribute_name, attributes). Each
attribute is a `float` type `tf.Tensor` of shape
`[batch_size, max_num_detections, attribute_size]` representing attribute
predictions for detected boxes. Can be an empty dict if no attribute
learning is required.
"""
"""
with
tf
.
name_scope
(
'generate_detections'
):
with
tf
.
name_scope
(
'generate_detections'
):
batch_size
=
scores
.
get_shape
().
as_list
()[
0
]
batch_size
=
scores
.
get_shape
().
as_list
()[
0
]
...
@@ -70,28 +81,45 @@ def _generate_detections_v1(boxes,
...
@@ -70,28 +81,45 @@ def _generate_detections_v1(boxes,
nmsed_classes
=
[]
nmsed_classes
=
[]
nmsed_scores
=
[]
nmsed_scores
=
[]
valid_detections
=
[]
valid_detections
=
[]
if
attributes
:
nmsed_attributes
=
{
att_name
:
[]
for
att_name
in
attributes
.
keys
()}
else
:
nmsed_attributes
=
{}
for
i
in
range
(
batch_size
):
for
i
in
range
(
batch_size
):
(
nmsed_boxes_i
,
nmsed_scores_i
,
nmsed_classes_i
,
(
nmsed_boxes_i
,
nmsed_scores_i
,
nmsed_classes_i
,
valid_detections_i
,
valid_detections
_i
)
=
_generate_detections_per_image
(
nmsed_att
_i
)
=
_generate_detections_per_image
(
boxes
[
i
],
boxes
[
i
],
scores
[
i
],
scores
[
i
],
max_num_detections
,
attributes
=
{
nms_iou_threshold
,
att_name
:
att
[
i
]
for
att_name
,
att
in
attributes
.
items
()
pre_nms_score_threshold
,
}
if
attributes
else
{},
pre_nms_top_k
)
pre_nms_top_k
=
pre_nms_top_k
,
pre_nms_score_threshold
=
pre_nms_score_threshold
,
nms_iou_threshold
=
nms_iou_threshold
,
max_num_detections
=
max_num_detections
)
nmsed_boxes
.
append
(
nmsed_boxes_i
)
nmsed_boxes
.
append
(
nmsed_boxes_i
)
nmsed_scores
.
append
(
nmsed_scores_i
)
nmsed_scores
.
append
(
nmsed_scores_i
)
nmsed_classes
.
append
(
nmsed_classes_i
)
nmsed_classes
.
append
(
nmsed_classes_i
)
valid_detections
.
append
(
valid_detections_i
)
valid_detections
.
append
(
valid_detections_i
)
if
attributes
:
for
att_name
in
attributes
.
keys
():
nmsed_attributes
[
att_name
].
append
(
nmsed_att_i
[
att_name
])
nmsed_boxes
=
tf
.
stack
(
nmsed_boxes
,
axis
=
0
)
nmsed_boxes
=
tf
.
stack
(
nmsed_boxes
,
axis
=
0
)
nmsed_scores
=
tf
.
stack
(
nmsed_scores
,
axis
=
0
)
nmsed_scores
=
tf
.
stack
(
nmsed_scores
,
axis
=
0
)
nmsed_classes
=
tf
.
stack
(
nmsed_classes
,
axis
=
0
)
nmsed_classes
=
tf
.
stack
(
nmsed_classes
,
axis
=
0
)
valid_detections
=
tf
.
stack
(
valid_detections
,
axis
=
0
)
valid_detections
=
tf
.
stack
(
valid_detections
,
axis
=
0
)
return
nmsed_boxes
,
nmsed_scores
,
nmsed_classes
,
valid_detections
if
attributes
:
for
att_name
in
attributes
.
keys
():
nmsed_attributes
[
att_name
]
=
tf
.
stack
(
nmsed_attributes
[
att_name
],
axis
=
0
)
return
nmsed_boxes
,
nmsed_scores
,
nmsed_classes
,
valid_detections
,
nmsed_attributes
def
_generate_detections_per_image
(
boxes
,
def
_generate_detections_per_image
(
boxes
,
scores
,
scores
,
attributes
=
None
,
pre_nms_top_k
=
5000
,
pre_nms_top_k
=
5000
,
pre_nms_score_threshold
=
0.05
,
pre_nms_score_threshold
=
0.05
,
nms_iou_threshold
=
0.5
,
nms_iou_threshold
=
0.5
,
...
@@ -106,6 +134,10 @@ def _generate_detections_per_image(boxes,
...
@@ -106,6 +134,10 @@ def _generate_detections_per_image(boxes,
probability on all feature levels. The N is the number of total anchors on
probability on all feature levels. The N is the number of total anchors on
all levels. The num_classes is the number of classes predicted by the
all levels. The num_classes is the number of classes predicted by the
model. Note that the class_outputs here is the raw score.
model. Note that the class_outputs here is the raw score.
attributes: If not None, a dict of `tf.Tensor`. Each value is in shape
`[N, num_classes, attribute_size]` or `[N, 1, attribute_size]` of
attribute predictions on all feature levels. The N is the number of total
anchors on all levels.
pre_nms_top_k: An `int` number of top candidate detections per class before
pre_nms_top_k: An `int` number of top candidate detections per class before
NMS.
NMS.
pre_nms_score_threshold: A `float` representing the threshold for deciding
pre_nms_score_threshold: A `float` representing the threshold for deciding
...
@@ -125,16 +157,23 @@ def _generate_detections_per_image(boxes,
...
@@ -125,16 +157,23 @@ def _generate_detections_per_image(boxes,
classes for detected boxes.
classes for detected boxes.
valid_detections: An `int` tf.Tensor of shape [1] only the top
valid_detections: An `int` tf.Tensor of shape [1] only the top
`valid_detections` boxes are valid detections.
`valid_detections` boxes are valid detections.
nms_attributes: None or a dict. Each value is a `float` tf.Tensor of shape
`[max_num_detections, attribute_size]` representing attribute predictions
for detected boxes. Can be an empty dict if `attributes` is None.
"""
"""
nmsed_boxes
=
[]
nmsed_boxes
=
[]
nmsed_scores
=
[]
nmsed_scores
=
[]
nmsed_classes
=
[]
nmsed_classes
=
[]
num_classes_for_box
=
boxes
.
get_shape
().
as_list
()[
1
]
num_classes_for_box
=
boxes
.
get_shape
().
as_list
()[
1
]
num_classes
=
scores
.
get_shape
().
as_list
()[
1
]
num_classes
=
scores
.
get_shape
().
as_list
()[
1
]
if
attributes
:
nmsed_attributes
=
{
att_name
:
[]
for
att_name
in
attributes
.
keys
()}
else
:
nmsed_attributes
=
{}
for
i
in
range
(
num_classes
):
for
i
in
range
(
num_classes
):
boxes_i
=
boxes
[:,
min
(
num_classes_for_box
-
1
,
i
)]
boxes_i
=
boxes
[:,
min
(
num_classes_for_box
-
1
,
i
)]
scores_i
=
scores
[:,
i
]
scores_i
=
scores
[:,
i
]
# Obtains pre_nms_top_k before running NMS.
# Obtains pre_nms_top_k before running NMS.
scores_i
,
indices
=
tf
.
nn
.
top_k
(
scores_i
,
indices
=
tf
.
nn
.
top_k
(
scores_i
,
k
=
tf
.
minimum
(
tf
.
shape
(
scores_i
)[
-
1
],
pre_nms_top_k
))
scores_i
,
k
=
tf
.
minimum
(
tf
.
shape
(
scores_i
)[
-
1
],
pre_nms_top_k
))
...
@@ -159,6 +198,13 @@ def _generate_detections_per_image(boxes,
...
@@ -159,6 +198,13 @@ def _generate_detections_per_image(boxes,
nmsed_boxes
.
append
(
nmsed_boxes_i
)
nmsed_boxes
.
append
(
nmsed_boxes_i
)
nmsed_scores
.
append
(
nmsed_scores_i
)
nmsed_scores
.
append
(
nmsed_scores_i
)
nmsed_classes
.
append
(
nmsed_classes_i
)
nmsed_classes
.
append
(
nmsed_classes_i
)
if
attributes
:
for
att_name
,
att
in
attributes
.
items
():
num_classes_for_attr
=
att
.
get_shape
().
as_list
()[
1
]
att_i
=
att
[:,
min
(
num_classes_for_attr
-
1
,
i
)]
att_i
=
tf
.
gather
(
att_i
,
indices
)
nmsed_att_i
=
tf
.
gather
(
att_i
,
nmsed_indices_i
)
nmsed_attributes
[
att_name
].
append
(
nmsed_att_i
)
# Concats results from all classes and sort them.
# Concats results from all classes and sort them.
nmsed_boxes
=
tf
.
concat
(
nmsed_boxes
,
axis
=
0
)
nmsed_boxes
=
tf
.
concat
(
nmsed_boxes
,
axis
=
0
)
...
@@ -170,7 +216,13 @@ def _generate_detections_per_image(boxes,
...
@@ -170,7 +216,13 @@ def _generate_detections_per_image(boxes,
nmsed_classes
=
tf
.
gather
(
nmsed_classes
,
indices
)
nmsed_classes
=
tf
.
gather
(
nmsed_classes
,
indices
)
valid_detections
=
tf
.
reduce_sum
(
valid_detections
=
tf
.
reduce_sum
(
tf
.
cast
(
tf
.
greater
(
nmsed_scores
,
-
1
),
tf
.
int32
))
tf
.
cast
(
tf
.
greater
(
nmsed_scores
,
-
1
),
tf
.
int32
))
return
nmsed_boxes
,
nmsed_scores
,
nmsed_classes
,
valid_detections
if
attributes
:
for
att_name
in
attributes
.
keys
():
nmsed_attributes
[
att_name
]
=
tf
.
concat
(
nmsed_attributes
[
att_name
],
axis
=
0
)
nmsed_attributes
[
att_name
]
=
tf
.
gather
(
nmsed_attributes
[
att_name
],
indices
)
return
nmsed_boxes
,
nmsed_scores
,
nmsed_classes
,
valid_detections
,
nmsed_attributes
def
_select_top_k_scores
(
scores_in
,
pre_nms_num_detections
):
def
_select_top_k_scores
(
scores_in
,
pre_nms_num_detections
):
...
@@ -532,7 +584,8 @@ class MultilevelDetectionGenerator(tf.keras.layers.Layer):
...
@@ -532,7 +584,8 @@ class MultilevelDetectionGenerator(tf.keras.layers.Layer):
raw_boxes
,
raw_boxes
,
raw_scores
,
raw_scores
,
anchor_boxes
,
anchor_boxes
,
image_shape
):
image_shape
,
raw_attributes
=
None
):
"""Generates final detections.
"""Generates final detections.
Args:
Args:
...
@@ -547,6 +600,11 @@ class MultilevelDetectionGenerator(tf.keras.layers.Layer):
...
@@ -547,6 +600,11 @@ class MultilevelDetectionGenerator(tf.keras.layers.Layer):
image_shape: A `tf.Tensor` of shape of [batch_size, 2] storing the image
image_shape: A `tf.Tensor` of shape of [batch_size, 2] storing the image
height and width w.r.t. the scaled image, i.e. the same image space as
height and width w.r.t. the scaled image, i.e. the same image space as
`box_outputs` and `anchor_boxes`.
`box_outputs` and `anchor_boxes`.
raw_attributes: If not None, a `dict` of
(attribute_name, attribute_prediction) pairs. `attribute_prediction`
is a dict that contains keys representing FPN levels and values
representing tenors of shape `[batch, feature_h, feature_w,
num_anchors * attribute_size]`.
Returns:
Returns:
If `apply_nms` = True, the return is a dictionary with keys:
If `apply_nms` = True, the return is a dictionary with keys:
...
@@ -560,15 +618,26 @@ class MultilevelDetectionGenerator(tf.keras.layers.Layer):
...
@@ -560,15 +618,26 @@ class MultilevelDetectionGenerator(tf.keras.layers.Layer):
[batch, max_num_detections] representing classes for detected boxes.
[batch, max_num_detections] representing classes for detected boxes.
`num_detections`: An `int` tf.Tensor of shape [batch] only the first
`num_detections`: An `int` tf.Tensor of shape [batch] only the first
`num_detections` boxes are valid detections
`num_detections` boxes are valid detections
`detection_attributes`: A dict. Values of the dict is a `float`
tf.Tensor of shape [batch, max_num_detections, attribute_size]
representing attribute predictions for detected boxes.
If `apply_nms` = False, the return is a dictionary with keys:
If `apply_nms` = False, the return is a dictionary with keys:
`decoded_boxes`: A `float` tf.Tensor of shape [batch, num_raw_boxes, 4]
`decoded_boxes`: A `float` tf.Tensor of shape [batch, num_raw_boxes, 4]
representing all the decoded boxes.
representing all the decoded boxes.
`decoded_box_scores`: A `float` tf.Tensor of shape
`decoded_box_scores`: A `float` tf.Tensor of shape
[batch, num_raw_boxes] representing socres of all the decoded boxes.
[batch, num_raw_boxes] representing socres of all the decoded boxes.
`decoded_box_attributes`: A dict. Values in the dict is a
`float` tf.Tensor of shape [batch, num_raw_boxes, attribute_size]
representing attribute predictions of all the decoded boxes.
"""
"""
# Collects outputs from all levels into a list.
# Collects outputs from all levels into a list.
boxes
=
[]
boxes
=
[]
scores
=
[]
scores
=
[]
if
raw_attributes
:
attributes
=
{
att_name
:
[]
for
att_name
in
raw_attributes
.
keys
()}
else
:
attributes
=
{}
levels
=
list
(
raw_boxes
.
keys
())
levels
=
list
(
raw_boxes
.
keys
())
min_level
=
int
(
min
(
levels
))
min_level
=
int
(
min
(
levels
))
max_level
=
int
(
max
(
levels
))
max_level
=
int
(
max
(
levels
))
...
@@ -597,17 +666,34 @@ class MultilevelDetectionGenerator(tf.keras.layers.Layer):
...
@@ -597,17 +666,34 @@ class MultilevelDetectionGenerator(tf.keras.layers.Layer):
boxes
.
append
(
boxes_i
)
boxes
.
append
(
boxes_i
)
scores
.
append
(
scores_i
)
scores
.
append
(
scores_i
)
if
raw_attributes
:
for
att_name
,
raw_att
in
raw_attributes
.
items
():
attribute_size
=
tf
.
shape
(
raw_att
[
str
(
i
)])[
-
1
]
//
num_anchors_per_locations
att_i
=
tf
.
reshape
(
raw_att
[
str
(
i
)],
[
batch_size
,
-
1
,
attribute_size
])
attributes
[
att_name
].
append
(
att_i
)
boxes
=
tf
.
concat
(
boxes
,
axis
=
1
)
boxes
=
tf
.
concat
(
boxes
,
axis
=
1
)
boxes
=
tf
.
expand_dims
(
boxes
,
axis
=
2
)
boxes
=
tf
.
expand_dims
(
boxes
,
axis
=
2
)
scores
=
tf
.
concat
(
scores
,
axis
=
1
)
scores
=
tf
.
concat
(
scores
,
axis
=
1
)
if
raw_attributes
:
for
att_name
in
raw_attributes
.
keys
():
attributes
[
att_name
]
=
tf
.
concat
(
attributes
[
att_name
],
axis
=
1
)
attributes
[
att_name
]
=
tf
.
expand_dims
(
attributes
[
att_name
],
axis
=
2
)
if
not
self
.
_config_dict
[
'apply_nms'
]:
if
not
self
.
_config_dict
[
'apply_nms'
]:
return
{
return
{
'decoded_boxes'
:
boxes
,
'decoded_boxes'
:
boxes
,
'decoded_box_scores'
:
scores
,
'decoded_box_scores'
:
scores
,
'decoded_box_attributes'
:
attributes
,
}
}
if
self
.
_config_dict
[
'use_batched_nms'
]:
if
self
.
_config_dict
[
'use_batched_nms'
]:
if
raw_attributes
:
raise
ValueError
(
'Attribute learning is not supported for batched NMS.'
)
nmsed_boxes
,
nmsed_scores
,
nmsed_classes
,
valid_detections
=
(
nmsed_boxes
,
nmsed_scores
,
nmsed_classes
,
valid_detections
=
(
_generate_detections_batched
(
_generate_detections_batched
(
boxes
,
boxes
,
...
@@ -615,16 +701,28 @@ class MultilevelDetectionGenerator(tf.keras.layers.Layer):
...
@@ -615,16 +701,28 @@ class MultilevelDetectionGenerator(tf.keras.layers.Layer):
self
.
_config_dict
[
'pre_nms_score_threshold'
],
self
.
_config_dict
[
'pre_nms_score_threshold'
],
self
.
_config_dict
[
'nms_iou_threshold'
],
self
.
_config_dict
[
'nms_iou_threshold'
],
self
.
_config_dict
[
'max_num_detections'
]))
self
.
_config_dict
[
'max_num_detections'
]))
# Set `nmsed_attributes` to None for batched NMS.
nmsed_attributes
=
{}
else
:
else
:
nmsed_boxes
,
nmsed_scores
,
nmsed_classes
,
valid_detections
=
(
if
raw_attributes
:
_generate_detections_v2
(
nmsed_boxes
,
nmsed_scores
,
nmsed_classes
,
valid_detections
,
nmsed_attributes
=
(
boxes
,
_generate_detections_v1
(
scores
,
boxes
,
self
.
_config_dict
[
'pre_nms_top_k'
],
scores
,
self
.
_config_dict
[
'pre_nms_score_threshold'
],
attributes
=
attributes
if
raw_attributes
else
None
,
self
.
_config_dict
[
'nms_iou_threshold'
],
pre_nms_top_k
=
self
.
_config_dict
[
'pre_nms_top_k'
],
self
.
_config_dict
[
'max_num_detections'
]))
pre_nms_score_threshold
=
self
.
_config_dict
[
'pre_nms_score_threshold'
],
nms_iou_threshold
=
self
.
_config_dict
[
'nms_iou_threshold'
],
max_num_detections
=
self
.
_config_dict
[
'max_num_detections'
]))
else
:
nmsed_boxes
,
nmsed_scores
,
nmsed_classes
,
valid_detections
=
(
_generate_detections_v2
(
boxes
,
scores
,
self
.
_config_dict
[
'pre_nms_top_k'
],
self
.
_config_dict
[
'pre_nms_score_threshold'
],
self
.
_config_dict
[
'nms_iou_threshold'
],
self
.
_config_dict
[
'max_num_detections'
]))
nmsed_attributes
=
{}
# Adds 1 to offset the background class which has index 0.
# Adds 1 to offset the background class which has index 0.
nmsed_classes
+=
1
nmsed_classes
+=
1
...
@@ -633,6 +731,7 @@ class MultilevelDetectionGenerator(tf.keras.layers.Layer):
...
@@ -633,6 +731,7 @@ class MultilevelDetectionGenerator(tf.keras.layers.Layer):
'detection_boxes'
:
nmsed_boxes
,
'detection_boxes'
:
nmsed_boxes
,
'detection_classes'
:
nmsed_classes
,
'detection_classes'
:
nmsed_classes
,
'detection_scores'
:
nmsed_scores
,
'detection_scores'
:
nmsed_scores
,
'detection_attributes'
:
nmsed_attributes
,
}
}
def
get_config
(
self
):
def
get_config
(
self
):
...
...
official/vision/beta/modeling/layers/detection_generator_test.py
View file @
cdf815f8
...
@@ -116,10 +116,11 @@ class MultilevelDetectionGeneratorTest(
...
@@ -116,10 +116,11 @@ class MultilevelDetectionGeneratorTest(
parameterized
.
TestCase
,
tf
.
test
.
TestCase
):
parameterized
.
TestCase
,
tf
.
test
.
TestCase
):
@
parameterized
.
parameters
(
@
parameterized
.
parameters
(
(
True
),
(
True
,
False
),
(
False
),
(
False
,
False
),
(
False
,
True
),
)
)
def
testDetectionsOutputShape
(
self
,
use_batched_nms
):
def
testDetectionsOutputShape
(
self
,
use_batched_nms
,
has_att_heads
):
min_level
=
4
min_level
=
4
max_level
=
6
max_level
=
6
num_scales
=
2
num_scales
=
2
...
@@ -169,11 +170,34 @@ class MultilevelDetectionGeneratorTest(
...
@@ -169,11 +170,34 @@ class MultilevelDetectionGeneratorTest(
'6'
:
tf
.
reshape
(
tf
.
convert_to_tensor
(
'6'
:
tf
.
reshape
(
tf
.
convert_to_tensor
(
box_outputs_all
[
80
:
84
],
dtype
=
tf
.
float32
),
[
1
,
2
,
2
,
4
]),
box_outputs_all
[
80
:
84
],
dtype
=
tf
.
float32
),
[
1
,
2
,
2
,
4
]),
}
}
if
has_att_heads
:
att_outputs_all
=
np
.
random
.
rand
(
84
,
1
)
# random attributes.
att_outputs
=
{
'depth'
:
{
'4'
:
tf
.
reshape
(
tf
.
convert_to_tensor
(
att_outputs_all
[
0
:
64
],
dtype
=
tf
.
float32
),
[
1
,
8
,
8
,
1
]),
'5'
:
tf
.
reshape
(
tf
.
convert_to_tensor
(
att_outputs_all
[
64
:
80
],
dtype
=
tf
.
float32
),
[
1
,
4
,
4
,
1
]),
'6'
:
tf
.
reshape
(
tf
.
convert_to_tensor
(
att_outputs_all
[
80
:
84
],
dtype
=
tf
.
float32
),
[
1
,
2
,
2
,
1
]),
}
}
else
:
att_outputs
=
None
image_info
=
tf
.
constant
([[[
1000
,
1000
],
[
100
,
100
],
[
0.1
,
0.1
],
[
0
,
0
]]],
image_info
=
tf
.
constant
([[[
1000
,
1000
],
[
100
,
100
],
[
0.1
,
0.1
],
[
0
,
0
]]],
dtype
=
tf
.
float32
)
dtype
=
tf
.
float32
)
generator
=
detection_generator
.
MultilevelDetectionGenerator
(
**
kwargs
)
generator
=
detection_generator
.
MultilevelDetectionGenerator
(
**
kwargs
)
results
=
generator
(
box_outputs
,
class_outputs
,
anchor_boxes
,
results
=
generator
(
box_outputs
,
class_outputs
,
anchor_boxes
,
image_info
[:,
1
,
:])
image_info
[:,
1
,
:]
,
att_outputs
)
boxes
=
results
[
'detection_boxes'
]
boxes
=
results
[
'detection_boxes'
]
classes
=
results
[
'detection_classes'
]
classes
=
results
[
'detection_classes'
]
scores
=
results
[
'detection_scores'
]
scores
=
results
[
'detection_scores'
]
...
@@ -183,6 +207,9 @@ class MultilevelDetectionGeneratorTest(
...
@@ -183,6 +207,9 @@ class MultilevelDetectionGeneratorTest(
self
.
assertEqual
(
scores
.
numpy
().
shape
,
(
batch_size
,
max_num_detections
,))
self
.
assertEqual
(
scores
.
numpy
().
shape
,
(
batch_size
,
max_num_detections
,))
self
.
assertEqual
(
classes
.
numpy
().
shape
,
(
batch_size
,
max_num_detections
,))
self
.
assertEqual
(
classes
.
numpy
().
shape
,
(
batch_size
,
max_num_detections
,))
self
.
assertEqual
(
valid_detections
.
numpy
().
shape
,
(
batch_size
,))
self
.
assertEqual
(
valid_detections
.
numpy
().
shape
,
(
batch_size
,))
if
has_att_heads
:
for
att
in
results
[
'detection_attributes'
].
values
():
self
.
assertEqual
(
att
.
numpy
().
shape
,
(
batch_size
,
max_num_detections
,
1
))
def
test_serialize_deserialize
(
self
):
def
test_serialize_deserialize
(
self
):
kwargs
=
{
kwargs
=
{
...
...
official/vision/beta/modeling/retinanet_model.py
View file @
cdf815f8
...
@@ -81,31 +81,41 @@ class RetinaNetModel(tf.keras.Model):
...
@@ -81,31 +81,41 @@ class RetinaNetModel(tf.keras.Model):
- values: `Tensor`, the box coordinates predicted from a particular
- values: `Tensor`, the box coordinates predicted from a particular
feature level, whose shape is
feature level, whose shape is
[batch, height_l, width_l, 4 * num_anchors_per_location].
[batch, height_l, width_l, 4 * num_anchors_per_location].
attributes: a dict of (attribute_name, attribute_predictions). Each
attribute prediction is a dict that includes:
- key: `str`, the level of the multilevel predictions.
- values: `Tensor`, the attribute predictions from a particular
feature level, whose shape is
[batch, height_l, width_l, att_size * num_anchors_per_location].
"""
"""
# Feature extraction.
# Feature extraction.
features
=
self
.
backbone
(
images
)
features
=
self
.
backbone
(
images
)
if
self
.
decoder
:
if
self
.
decoder
:
features
=
self
.
decoder
(
features
)
features
=
self
.
decoder
(
features
)
# Dense prediction.
# Dense prediction.
`raw_attributes` can be empty.
raw_scores
,
raw_boxes
=
self
.
head
(
features
)
raw_scores
,
raw_boxes
,
raw_attributes
=
self
.
head
(
features
)
if
training
:
if
training
:
return
{
return
{
'cls_outputs'
:
raw_scores
,
'cls_outputs'
:
raw_scores
,
'box_outputs'
:
raw_boxes
,
'box_outputs'
:
raw_boxes
,
'att_outputs'
:
raw_attributes
,
}
}
else
:
else
:
# Post-processing.
# Post-processing.
final_results
=
self
.
detection_generator
(
final_results
=
self
.
detection_generator
(
raw_boxes
,
raw_scores
,
raw_boxes
,
raw_scores
,
anchor_boxes
,
image_shape
)
anchor_boxes
,
image_shape
,
raw_attributes
)
return
{
return
{
'detection_boxes'
:
final_results
[
'detection_boxes'
],
'detection_boxes'
:
final_results
[
'detection_boxes'
],
'detection_scores'
:
final_results
[
'detection_scores'
],
'detection_scores'
:
final_results
[
'detection_scores'
],
'detection_classes'
:
final_results
[
'detection_classes'
],
'detection_classes'
:
final_results
[
'detection_classes'
],
'detection_attributes'
:
final_results
[
'detection_attributes'
],
'num_detections'
:
final_results
[
'num_detections'
],
'num_detections'
:
final_results
[
'num_detections'
],
'cls_outputs'
:
raw_scores
,
'cls_outputs'
:
raw_scores
,
'box_outputs'
:
raw_boxes
'box_outputs'
:
raw_boxes
,
'att_outputs'
:
raw_attributes
,
}
}
@
property
@
property
...
...
official/vision/beta/modeling/retinanet_model_test.py
View file @
cdf815f8
...
@@ -95,11 +95,13 @@ class RetinaNetTest(parameterized.TestCase, tf.test.TestCase):
...
@@ -95,11 +95,13 @@ class RetinaNetTest(parameterized.TestCase, tf.test.TestCase):
strategy_combinations
.
cloud_tpu_strategy
,
strategy_combinations
.
cloud_tpu_strategy
,
strategy_combinations
.
one_device_strategy_gpu
,
strategy_combinations
.
one_device_strategy_gpu
,
],
],
image_size
=
[(
128
,
128
),],
image_size
=
[
(
128
,
128
),
],
training
=
[
True
,
False
],
training
=
[
True
,
False
],
)
has_att_heads
=
[
True
,
False
],
)
)
)
def
test_forward
(
self
,
strategy
,
image_size
,
training
):
def
test_forward
(
self
,
strategy
,
image_size
,
training
,
has_att_heads
):
"""Test for creation of a R50-FPN RetinaNet."""
"""Test for creation of a R50-FPN RetinaNet."""
tf
.
keras
.
backend
.
set_image_data_format
(
'channels_last'
)
tf
.
keras
.
backend
.
set_image_data_format
(
'channels_last'
)
num_classes
=
3
num_classes
=
3
...
@@ -130,10 +132,16 @@ class RetinaNetTest(parameterized.TestCase, tf.test.TestCase):
...
@@ -130,10 +132,16 @@ class RetinaNetTest(parameterized.TestCase, tf.test.TestCase):
input_specs
=
backbone
.
output_specs
,
input_specs
=
backbone
.
output_specs
,
min_level
=
min_level
,
min_level
=
min_level
,
max_level
=
max_level
)
max_level
=
max_level
)
if
has_att_heads
:
attribute_heads
=
{
'depth'
:
(
'regression'
,
1
)}
else
:
attribute_heads
=
None
head
=
dense_prediction_heads
.
RetinaNetHead
(
head
=
dense_prediction_heads
.
RetinaNetHead
(
min_level
=
min_level
,
min_level
=
min_level
,
max_level
=
max_level
,
max_level
=
max_level
,
num_classes
=
num_classes
,
num_classes
=
num_classes
,
attribute_heads
=
attribute_heads
,
num_anchors_per_location
=
num_anchors_per_location
)
num_anchors_per_location
=
num_anchors_per_location
)
generator
=
detection_generator
.
MultilevelDetectionGenerator
(
generator
=
detection_generator
.
MultilevelDetectionGenerator
(
max_num_detections
=
10
)
max_num_detections
=
10
)
...
@@ -152,6 +160,7 @@ class RetinaNetTest(parameterized.TestCase, tf.test.TestCase):
...
@@ -152,6 +160,7 @@ class RetinaNetTest(parameterized.TestCase, tf.test.TestCase):
if
training
:
if
training
:
cls_outputs
=
model_outputs
[
'cls_outputs'
]
cls_outputs
=
model_outputs
[
'cls_outputs'
]
box_outputs
=
model_outputs
[
'box_outputs'
]
box_outputs
=
model_outputs
[
'box_outputs'
]
att_outputs
=
model_outputs
[
'att_outputs'
]
for
level
in
range
(
min_level
,
max_level
+
1
):
for
level
in
range
(
min_level
,
max_level
+
1
):
self
.
assertIn
(
str
(
level
),
cls_outputs
)
self
.
assertIn
(
str
(
level
),
cls_outputs
)
self
.
assertIn
(
str
(
level
),
box_outputs
)
self
.
assertIn
(
str
(
level
),
box_outputs
)
...
@@ -167,10 +176,17 @@ class RetinaNetTest(parameterized.TestCase, tf.test.TestCase):
...
@@ -167,10 +176,17 @@ class RetinaNetTest(parameterized.TestCase, tf.test.TestCase):
image_size
[
1
]
//
2
**
level
,
image_size
[
1
]
//
2
**
level
,
4
*
num_anchors_per_location
4
*
num_anchors_per_location
],
box_outputs
[
str
(
level
)].
numpy
().
shape
)
],
box_outputs
[
str
(
level
)].
numpy
().
shape
)
if
has_att_heads
:
for
att
in
att_outputs
.
values
():
self
.
assertAllEqual
([
2
,
image_size
[
0
]
//
2
**
level
,
image_size
[
1
]
//
2
**
level
,
1
*
num_anchors_per_location
],
att
[
str
(
level
)].
numpy
().
shape
)
else
:
else
:
self
.
assertIn
(
'detection_boxes'
,
model_outputs
)
self
.
assertIn
(
'detection_boxes'
,
model_outputs
)
self
.
assertIn
(
'detection_scores'
,
model_outputs
)
self
.
assertIn
(
'detection_scores'
,
model_outputs
)
self
.
assertIn
(
'detection_classes'
,
model_outputs
)
self
.
assertIn
(
'detection_classes'
,
model_outputs
)
self
.
assertIn
(
'detection_attributes'
,
model_outputs
)
self
.
assertIn
(
'num_detections'
,
model_outputs
)
self
.
assertIn
(
'num_detections'
,
model_outputs
)
self
.
assertAllEqual
(
self
.
assertAllEqual
(
[
2
,
10
,
4
],
model_outputs
[
'detection_boxes'
].
numpy
().
shape
)
[
2
,
10
,
4
],
model_outputs
[
'detection_boxes'
].
numpy
().
shape
)
...
@@ -180,6 +196,10 @@ class RetinaNetTest(parameterized.TestCase, tf.test.TestCase):
...
@@ -180,6 +196,10 @@ class RetinaNetTest(parameterized.TestCase, tf.test.TestCase):
[
2
,
10
],
model_outputs
[
'detection_classes'
].
numpy
().
shape
)
[
2
,
10
],
model_outputs
[
'detection_classes'
].
numpy
().
shape
)
self
.
assertAllEqual
(
self
.
assertAllEqual
(
[
2
,],
model_outputs
[
'num_detections'
].
numpy
().
shape
)
[
2
,],
model_outputs
[
'num_detections'
].
numpy
().
shape
)
if
has_att_heads
:
self
.
assertAllEqual
(
[
2
,
10
,
1
],
model_outputs
[
'detection_attributes'
][
'depth'
].
numpy
().
shape
)
def
test_serialize_deserialize
(
self
):
def
test_serialize_deserialize
(
self
):
"""Validate the network can be serialized and deserialized."""
"""Validate the network can be serialized and deserialized."""
...
@@ -220,4 +240,3 @@ class RetinaNetTest(parameterized.TestCase, tf.test.TestCase):
...
@@ -220,4 +240,3 @@ class RetinaNetTest(parameterized.TestCase, tf.test.TestCase):
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
tf
.
test
.
main
()
tf
.
test
.
main
()
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment